
Selection sort 1

Selection sort

Class Sorting algorithm

Data structure Array

Worst case performance О(n2)

Best case performance О(n2)

Average case performance О(n2)

Worst case space complexity О(n) total, O(1) auxiliary

http://en.wikipedia.org/w/index.php?title=File:Selection_sort_animation.gif
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case

Selection sort 2

Selection Sort Animation

Selection sort is a sorting algorithm, specifically an in-place comparison sort. It has
O(n2) complexity, making it inefficient on large lists, and generally performs worse than
the similar insertion sort. Selection sort is noted for its simplicity, and also has
performance advantages over more complicated algorithms in certain situations.

Algorithm

The algorithm works as follows:
1. Find the minimum value in the list
2. Swap it with the value in the first position
3. Repeat the steps above for the remainder of the list (starting at the second position

and advancing each time)
Effectively, the list is divided into two parts: the sublist of items already sorted, which is
built up from left to right and is found at the beginning, and the sublist of items
remaining to be sorted, occupying the remainder of the array.
Here is an example of this sort algorithm sorting five elements:

64 25 12 22 11

11 25 12 22 64

11 12 25 22 64

11 12 22 25 64

11 12 22 25 64

(nothing appears changed on this last line because the last 2 numbers were already in order)
Selection sort can also be used on list structures that make add and remove efficient, such as a linked list. In this case
it's more common to remove the minimum element from the remainder of the list, and then insert it at the end of the
values sorted so far. For example:

64 25 12 22 11

11 64 25 12 22

11 12 64 25 22

11 12 22 64 25

http://en.wikipedia.org/w/index.php?title=File:Selection-Sort-Animation.gif
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=In-place_algorithm
http://en.wikipedia.org/w/index.php?title=Comparison_sort
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Linked_list

Selection sort 3

11 12 22 25 64

/* a[0] to a[n-1] is the array to sort */

int iPos;

int iMin;

/* advance the position through the entire array */

/* (could do iPos < n-1 because single element is also min element) */

for (iPos = 0; iPos < n; iPos++)

{

 /* find the min element in the unsorted a[iPos .. n-1] */

 /* assume the min is the first element */

 iMin = iPos;

 /* test against all other elements */

 for (i = iPos+1; i < n; i++)

 {

 /* if this element is less, then it is the new minimum */

 if (a[i] < a[iMin])

 {

 /* found new minimum; remember its index */

 iMin = i;

 }

 }

 /* iMin is the index of the minimum element. Swap it with the current

 position */

 swap(a, iPos, iMin);

}

Mathematical definition
Let be a non-empty set and such that where:
1. is a permutation of ,
2. for all and ,

3. ,

4. is the smallest element of , and
5. is the set of elements of without one instance of the smallest element of .

Analysis
Selection sort is not difficult to analyze compared to other sorting algorithms since none of the loops depend on the
data in the array. Selecting the lowest element requires scanning all n elements (this takes n − 1 comparisons) and
then swapping it into the first position. Finding the next lowest element requires scanning the remaining n − 1
elements and so on, for (n − 1) + (n − 2) + ... + 2 + 1 = n(n − 1) / 2 ∈ Θ(n2) comparisons (see arithmetic
progression). Each of these scans requires one swap for n − 1 elements (the final element is already in place).

http://en.wikipedia.org/w/index.php?title=Set_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Permutation
http://en.wikipedia.org/w/index.php?title=Maxima_and_minima
http://en.wikipedia.org/w/index.php?title=Arithmetic_progression
http://en.wikipedia.org/w/index.php?title=Arithmetic_progression

Selection sort 4

Comparison to other sorting algorithms
Among simple average-case Θ(n2) algorithms, selection sort almost always outperforms bubble sort and gnome sort,
but is generally outperformed by insertion sort. Insertion sort is very similar in that after the kth iteration, the first k
elements in the array are in sorted order. Insertion sort's advantage is that it only scans as many elements as it needs
in order to place the k + 1st element, while selection sort must scan all remaining elements to find the k + 1st
element.
Simple calculation shows that insertion sort will therefore usually perform about half as many comparisons as
selection sort, although it can perform just as many or far fewer depending on the order the array was in prior to
sorting. It can be seen as an advantage for some real-time applications that selection sort will perform identically
regardless of the order of the array, while insertion sort's running time can vary considerably. However, this is more
often an advantage for insertion sort in that it runs much more efficiently if the array is already sorted or "close to
sorted."
While selection sort is preferable to insertion sort in terms of number of writes (Θ(n) swaps versus Ο(n2) swaps), it
almost always far exceeds (and never beats) the number of writes that cycle sort makes, as cycle sort is theoretically
optimal in the number of writes. This can be important if writes are significantly more expensive than reads, such as
with EEPROM or Flash memory, where every write lessens the lifespan of the memory.
Finally, selection sort is greatly outperformed on larger arrays by Θ(n log n) divide-and-conquer algorithms such as
mergesort. However, insertion sort or selection sort are both typically faster for small arrays (i.e. fewer than 10-20
elements). A useful optimization in practice for the recursive algorithms is to switch to insertion sort or selection sort
for "small enough" sublists.

Variants
Heapsort greatly improves the basic algorithm by using an implicit heap data structure to speed up finding and
removing the lowest datum. If implemented correctly, the heap will allow finding the next lowest element in
Θ(log n) time instead of Θ(n) for the inner loop in normal selection sort, reducing the total running time to
Θ(n log n).
A bidirectional variant of selection sort, called cocktail sort, is an algorithm which finds both the minimum and
maximum values in the list in every pass. This reduces the number of scans of the list by a factor of 2, eliminating
some loop overhead but not actually decreasing the number of comparisons or swaps. Note, however, that cocktail
sort more often refers to a bidirectional variant of bubble sort.
Selection sort can be implemented as a stable sort. If, rather than swapping in step 2, the minimum value is inserted
into the first position (that is, all intervening items moved down), the algorithm is stable. However, this modification
either requires a data structure that supports efficient insertions or deletions, such as a linked list, or it leads to
performing Θ(n2) writes.
In the bingo sort variant, items are ordered by repeatedly looking through the remaining items to find the greatest
value and moving all items with that value to their final location. Like counting sort, this is an efficient variant if
there are many duplicate values. Indeed, selection sort does one pass through the remaining items for each item
moved. Bingo sort does two passes for each value (not item): one pass to find the next biggest value, and one pass to
move every item with that value to its final location. Thus if on average there are more than two items with each
value, bingo sort may be faster.[1]

http://en.wikipedia.org/w/index.php?title=Bubble_sort
http://en.wikipedia.org/w/index.php?title=Gnome_sort
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Real-time_computing
http://en.wikipedia.org/w/index.php?title=Cycle_sort
http://en.wikipedia.org/w/index.php?title=EEPROM
http://en.wikipedia.org/w/index.php?title=Flash_memory
http://en.wikipedia.org/w/index.php?title=Divide-and-conquer_algorithm
http://en.wikipedia.org/w/index.php?title=Mergesort
http://en.wikipedia.org/w/index.php?title=Heapsort
http://en.wikipedia.org/w/index.php?title=Implicit_Data_Structure
http://en.wikipedia.org/w/index.php?title=Heap_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Data_structure
http://en.wikipedia.org/w/index.php?title=Cocktail_sort
http://en.wikipedia.org/w/index.php?title=Cocktail_sort
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm%23Classification
http://en.wikipedia.org/w/index.php?title=Counting_sort

Selection sort 5

References
[1] This article incorporates public domain material from the NIST document "Bingo sort" (http:/ / www. nist. gov/ dads/ HTML/ bingosort.

html) by Paul E. Black (Dictionary of Algorithms and Data Structures).

• Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, Third Edition.
Addison-Wesley, 1997. ISBN 0-201-89685-0. Pages 138–141 of Section 5.2.3: Sorting by Selection.

• Anany Levitin. Introduction to the Design & Analysis of Algorithms, 2nd Edition. ISBN 0-321-35828-7. Section
3.1: Selection Sort, pp 98-100.

• Robert Sedgewick. Algorithms in C++, Parts 1-4: Fundamentals, Data Structure, Sorting, Searching:
Fundamentals, Data Structures, Sorting, Searching Pts. 1-4, Second Edition. Addison-Wesley Longman, 1998.
ISBN 0-201-35088-2. Pages 273–274

External links
• Animated Sorting Algorithms: Selection Sort (http:/ / www. sorting-algorithms. com/ selection-sort) – graphical

demonstration and discussion of selection sort
• Applet and source code (http:/ / www. miaowang. de/ studium/ tutorials/ applets/ selectionsort_en. html)
• Selection Sort in C++ (http:/ / 24bytes. com/ selection-sort. html)
• Selection Sort Demonstration (http:/ / web. engr. oregonstate. edu/ ~minoura/ cs162/ javaProgs/ sort/ SelectSort.

html)
• Selection sort illustrated explanation. Java and C++ implementations. (http:/ / www. algolist. net/ Algorithms/

Sorting/ Selection_sort)

http://en.wikipedia.org/w/index.php?title=Copyright_status_of_work_by_the_U.S._government
http://en.wikipedia.org/w/index.php?title=National_Institute_of_Standards_and_Technology
http://www.nist.gov/dads/HTML/bingosort.html
http://www.nist.gov/dads/HTML/bingosort.html
http://en.wikipedia.org/w/index.php?title=Dictionary_of_Algorithms_and_Data_Structures
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=Robert_Sedgewick_%28computer_scientist%29
http://www.sorting-algorithms.com/selection-sort
http://www.miaowang.de/studium/tutorials/applets/selectionsort_en.html
http://24bytes.com/selection-sort.html
http://web.engr.oregonstate.edu/~minoura/cs162/javaProgs/sort/SelectSort.html
http://web.engr.oregonstate.edu/~minoura/cs162/javaProgs/sort/SelectSort.html
http://www.algolist.net/Algorithms/Sorting/Selection_sort
http://www.algolist.net/Algorithms/Sorting/Selection_sort

Article Sources and Contributors 6

Article Sources and Contributors
Selection sort Source: http://en.wikipedia.org/w/index.php?oldid=406515759 Contributors: Abu adam, Ahy1, Alexius08, Ario, Arthur Rubin, Arun APEC, Aseld, AxelBoldt, Balabiot, Beetstra,
BiT, Bpapa2, BrokenSegue, CJLL Wright, CardinalDan, Ceros, Closedmouth, Clx321, Conversion script, DaGizza, Daehrednud, Dave683, David Eppstein, Dcoetzee, DevastatorIIC, Dissident,
Dmaclach, Doradus, El C, Eric119, Fangyuan1st, Flatline, Fumitol, Gaspercat, GeorgeBills, Giftlite, Gilliam, Glrx, Grick, HJ Mitchell, HairyFotr, Harrisonmetz, Head, Hede2000, Hyad,
Hyegolfer, Ian Ashley, Ilyathemuromets, J.delanoy, JLaTondre, JMRodrigues, Jassyt, Javierito92, Jbonneau, Jesin, Joestape89, Joey-das-WBF, Johnl1479, Jonhall, Josh Kehn, Juliancolton, Kaly
J., Klutzy, Knuckles, Knutux, Kusunose, LeaveSleaves, Lee Daniel Crocker, Lights, Looxix, Mahanga, Mantipula, Marco Polo, Mariosal, Mike.pr, Mullacy, Nsrao2k, Nuno Tavares, Olathe, Oli
Filth, Opraveen, Oskar Sigvardsson, Oğuz Ergin, Paul Ebermann, Peristarkawan, Pfalstad, PhilipMW, Pichpich, Pingveno, Pred, Qst, Rhanekom, Robert Merkel, Romain Thouvenin, Ruud Koot,
SPTWriter, Shreeniwasiyer, Silly rabbit, Simguru, SiobhanHansa, Sligocki, Smckenna999, Smjg, Starkana, Starylon, Swift, TakuyaMurata, Tbhotch, Teacup, Timwi, Userabc, VTBassMatt,
VernoWhitney, Willking1979, Ww, Ycl6, Yelod, Yksyksyks, Zdeneks, ZeroOne, Zvar, Михајло Анђелковић, Олександр Кравчук, 294 ,ينام anonymous edits

Image Sources, Licenses and Contributors
Image:Selection sort animation.gif Source: http://en.wikipedia.org/w/index.php?title=File:Selection_sort_animation.gif License: Public Domain Contributors: at en.wikipedia.org
Image:Selection-Sort-Animation.gif Source: http://en.wikipedia.org/w/index.php?title=File:Selection-Sort-Animation.gif License: GNU Free Documentation License Contributors: German,
LipeFontoura, Nillerdk

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

	Selection sort
	Algorithm
	Mathematical definition
	Analysis
	Comparison to other sorting algorithms
	Variants
	References
	External links

	License

