
1 Replacing Specifications by Assertions?

The previous version of Quartz made use of specification modules. In this sec-
tion, it is discussed whether these specification modules can be replaced with
the new assertion statements. To this end, assume that the Quartz module has
been translated to a Kripke structure K with initial states I, transition relation
R, and label function L. In this case, a specification Φ will hold iff I ⊆ JΦKK
holds.

Next, let us consider what is checked when assertions and assumptions are
used. Assume, the Quartz program makes use of the assumptions (ϕ1, assume Φ1),
. . . , (ϕm, assume Φm) and the assertions (ψ1, assume Ψ1), . . . , (ψn, assume Ψn).
According to the semantics of assumptions and assertions, the following specifi-
cation is generated:

AG

(
m∧
i=1

(ϕi → Φi)→
n∧

i=1

(ψi → Ψi)

)

Obviously, all specifications that can be generated this way are of the form
AG(η → ξ), so that existential formulas can not be obtained this way. For this
reason, it seems that formulas like EFϕ cannot be checked with assertions.

However, note that specifications Φmust be state formulas. If we additionally
assume that all initial states have at least one infinite path, then we can use the
following lemma to see that in Quartz 2.0, we have not lost expressiveness:

Lemma 1 (Assuming Initial States). Given a Kripke structure K = (I,S,R,L),
a state formula Φ, and an atomic formula InitStates such that I = JInitStatesKK
holds. If all initial states I have at least one infinite path, then the following facts
are equivalent:

– K |= AG (InitStates→ Φ), i.e., I ⊆ JAG (InitStates→ Φ)KK
– K |= Φ, i.e., I ⊆ JΦKK

Proof. We prove the following two implications:

⇒: Assume (1) I ⊆ JAG (InitStates→ Φ)KK holds. Then, we conclude (note
that InitStates→ Φ is a state formula):

I ⊆ JAG (InitStates→ Φ)KK
⇔ ∀s ∈ I.(K, s′) |= AG (InitStates→ Φ)
⇔ ∀s ∈ I.∀π ∈ PathsK(s). (K, π, 0) |= G (InitStates→ Φ)
⇔ ∀s ∈ I.∀π ∈ PathsK(s).∀t ∈ N. (K, π, t) |= (InitStates→ Φ)
⇔ ∀s ∈ I.∀π ∈ PathsK(s).∀t ∈ N. (K, π(t)) |= (InitStates→ Φ)

Now, assume s is an arbitrary initial state. According to our assumption, s has
at least one infinite path π. Then, instantiating the above formula with s, one
of the infinite paths π ∈ PathsK(s), and t = 0 yields (2) ∀s ∈ I. (K, s) |= Φ,
i.e., K |= Φ.



⇐: Assume (2) ∀s ∈ I. (K, s) |= Φ holds. Consider an arbitrary initial state
s ∈ I and an infinite path π ∈ PathsK(s). It clearly follows from (2) that
(K, π(t)) |= (InitStates→ Φ) holds (note that all initial states are reach-
able by definition). Hence, we also have (1) I ⊆ JAG (InitStates→ Φ)KK.

ut

It is clear that the above lemma does not hold for states s that have no infinite
paths. For example, consider Φ :≡ ν.♦x which holds exactly in those states that
have an infinite path. Clearly, Φ does not hold in s, but s satisfies every formula
starting with a universal path quantifier A.

Hence, according to the above lemma, we can replace specifications with
assertions that are executed in the initial macro step of the Quartz program with
the restriction that all initial states must have at least one infinite path. This is
always the case when the program has no runtime errors like write conflicts etc.
Therefore, the entire verification has to proceed in two steps:

1. Check that there are no initial states with finite paths. Finite paths corre-
spond with program errors and can be found by causality analysis.

2. Having checked the absence of program errors, we can replace the specifica-
tions with assertions that are executed in the initial macro step. Note further
that we can use the simple translation from CTL to µ-calculus (without tak-
ing further care of finite paths).

Having seen that the replacement of specifications with (initial) assertions is
possible, it might be argued that this will not be as efficient. Using global model
checking, we clearly would check I ⊆ JΦKK once having computed JΦKK. Con-
sidering instead the specification AG (InitStates→ Φ), we would go on with
the following fixpoint iteration note that (AGψ is equivalent to νx.ψ ∧ �x):
Q0 := JtrueKK, Q1 := J(InitStates→ Φ) ∧�trueKK. Hence, Q1 = ((S \ I) ∪
JΦKK) ∩ J�trueKK, and assuming that I ⊆ JΦKK holds, we conclude further that
Q1 = S ∩ J�trueKK = J�trueKK. Finally, note that JtrueKK = J�trueKK, so that
Q0 = Q1 and the fixpoint is already found.

However, if I 6⊆ JΦKK holds, then Q1 = (S \ I) ∪ JΦKK. Then, I 6⊆ Q1, so
that checking during the fixpoint computation whether the initial states are still
contained in the approximation will also stop after the first iteration.

Hence, there is slightly more effort, since we have to perform one step of the
fixpoint iteration of the the AG operator.


