Bubble sort

Bubble sort

A visual representation of how bubble sort works.

Class Sorting algorithm
Data structure Array

Worst case performance O(n2)

Best case performance O(n)

Average case performance O(n2)

Worst case space complexity 0(1) auxiliary

Bubble sort, also known as sinking sort, is a simple sorting algorithm that works by repeatedly stepping through the
list to be sorted, comparing each pair of adjacent items and swapping them if they are in the wrong order. The pass
through the list is repeated until no swaps are needed, which indicates that the list is sorted. The algorithm gets its
name from the way smaller elements "bubble" to the top of the list. Because it only uses comparisons to operate on
elements, it is a comparison sort. The equally simple insertion sort has better performance than bubble sort, so some

have suggested no longer teaching the bubble sort.[1 2]

Analysis

Performance

Bubble sort has worst-case and average complexity both O(nz), where 7 is the number of items being sorted. There
exist many sorting algorithms with substantially better worst-case or average complexity of O(n log n). Even other
0(n2) sorting algorithms, such as insertion sort, tend to have better performance than bubble sort. Therefore, bubble

sort is not a practical sorting algorithm when 7 is large.

The only significant advantage that bubble sort has over most other implementations, even quicksort, but not
insertion sort, is that the ability to detect that the list is sorted is efficiently built into the algorithm. Performance of
bubble sort over an already-sorted list (best-case) is O(n). By contrast, most other algorithms, even those with better
average-case complexity, perform their entire sorting process on the set and thus are more complex. However, not
only does insertion sort have this mechanism too, but it also performs better on a list that is substantially sorted

(having a small number of inversions).



http://en.wikipedia.org/w/index.php?title=File:Bubblesort-edited.png
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=Swap_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Comparison_sort
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Quicksort
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Inversion_%28discrete_mathematics%29

Bubble sort

Rabbits and turtles

The positions of the elements in bubble sort will play a large part in determining its performance. Large elements at
the beginning of the list do not pose a problem, as they are quickly swapped. Small elements towards the end,
however, move to the beginning extremely slowly. This has led to these types of elements being named rabbits and

turtles, respectively.

Various efforts have been made to eliminate turtles to improve upon the speed of bubble sort. Cocktail sort achieves
this goal fairly well, but it retains O( n’ ) worst-case complexity. Comb sort compares elements separated by large
gaps, and can move turtles extremely quickly before proceeding to smaller and smaller gaps to smooth out the list.

Its average speed is comparable to faster algorithms like quicksort.

Step-by-step example

Let us take the array of numbers "5 1 4 2 8", and sort the array from lowest number to greatest number using bubble
sort algorithm. In each step, elements written in bold are being compared.

First Pass:

(51428)—(15428), Here, algorithm compares the first two elements, and swaps them.
(15428)—(14528),Swap since 5>4

(14528)—(14258),Swap since 5>2

(14258)—(14258), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:

(14258)—(14258)

(14258)—(12458),Swap since 4> 2

(12458)—(12458)

(12458)—(12458)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole
pass without any swap to know it is sorted.

Third Pass:

(12458)—(12458)

(12458)—(12458)

(12458)—(12458)

(12458)—(12458)

Finally, the array is sorted, and the algorithm can terminate.

Implementation

Pseudocode implementation

The algorithm can be expressed as: procedure bubbleSort( A : list of sortable items ) do swapped = false for each i in
1 to length(A) - 1 inclusive do: if A[i-1] > A[i] then swap( A[i-1], A[i] ) swapped = true end if end for while
swapped end procedure

Optimizing bubble sort

The bubble sort algorithm can be easily optimized by observing that the largest elements are placed in their final
position in the first passes. Or, more generally, after every pass, all elements after the last swap are sorted, and do not
need to be checked again. This not only allows us to skip over a lot of the elements, but also skip tracking of the
"swapped" variable. This results in about a worst case 50% improvement in iteration count, but no improvement in

swap counts.



http://en.wikipedia.org/w/index.php?title=Cocktail_sort
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Comb_sort
http://en.wikipedia.org/w/index.php?title=Quicksort

Bubble sort

To accomplish this in pseudocode we write the following: procedure bubbleSort( A : list of sortable items ) n =
length(A) do newn = 0 for (i = 0; i < n-1; i++) do: if A[i] > A[i+1] then swap(A[i], A[i+1]) newn =1 + 1 end if end

for n = newn while n > 1 end procedure
Here is the Nested Loop Method:

procedure bubbleSort( A : list of sortable items ) n = length(A) for (i = 0; i < n; i++) /* back through the area
bringing smallest remaining element to position i */ for (j = n-1; j > i; j--) if A[j-1] > A[j] then swap(A[j-1], A[j]) end
if end for end for end procedure

Another method for optimizing the bubble sort is the double bubble sort, also known as the 'Bubble Bobble' sort,
named after the 1986 arcade game, Bubble Bobble. 3]

In practice

Although bubble sort is one of the simplest -
sorting algorithms to understand and implement, * 1
its O(nz) complexity means it is far too +* + *
inefficient for use on lists having more than a . * 4

few elements. Even among simple O(nz) sorting -
algorithms, algorithms like insertion sort are .t +

usually considerably more efficient. o 0t

Due to its simplicity, bubble sort is often used to
introduce the concept of an algorithm, or a * A
sorting algorithm, to introductory computer + * *
science students. However, some researchers + * *

such as Owen Astrachan have gone to great + 4
lengths to disparage bubble sort and its + * .
continued popularity in computer science
education, recommending that it no longer even

[1]
be taught. swapping items until they appear in the correct order.

A bubble sort, a sorting algorithm that continuously steps through a list,

The Jargon file, which famously calls bogosort

"the archetypical perversely awful algorithm", also calls bubble sort "the generic bad algorithm".[4] Donald Knuth,
in his famous book The Art of Computer Programming, concluded that "the bubble sort seems to have nothing to
recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems", some of

which he then discusses.[z]

Bubble sort is asymptotically equivalent in running time to insertion sort in the worst case, but the two algorithms
differ greatly in the number of swaps necessary. Experimental results such as those of Astrachan have also shown
that insertion sort performs considerably better even on random lists. For these reasons many modern algorithm

textbooks avoid using the bubble sort algorithm in favor of insertion sort.

Bubble sort also interacts poorly with modern CPU hardware. It requires at least twice as many writes as insertion
sort, twice as many cache misses, and asymptotically more branch mispredictions. Experiments by Astrachan sorting
strings in Java show bubble sort to be roughly 5 times slower than insertion sort and 40% slower than selection

sort. (

In computer graphics it is popular for its capability to detect a very small error (like swap of just two elements) in
almost sorted array and fix it in with just linear complexity (2n). It is used for example in a polygon filling algorithm,
where bounding lines are sorted by their x coordinate at specific scan line (a line parallel to x axis) and with

incrementing y their order changes (two elements are swapped) only at intersections of two lines.



http://en.wikipedia.org/w/index.php?title=Pseudocode
http://en.wikipedia.org/w/index.php?title=Bubble_Bobble
http://en.wikipedia.org/w/index.php?title=Swap_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=File:Bubble_sort_animation.gif
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Owen_Astrachan
http://en.wikipedia.org/w/index.php?title=Jargon_file
http://en.wikipedia.org/w/index.php?title=Bogosort
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=The_Art_of_Computer_Programming
http://en.wikipedia.org/w/index.php?title=Asymptotic_notation
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Branch_prediction
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Selection_sort
http://en.wikipedia.org/w/index.php?title=Selection_sort

Bubble sort

Variations

Odd-even sort is a parallel version of bubble sort, for message passing systems.
In some cases, the sort works from right to left (the opposite direction), which is more appropriate for partially

sorted lists, or lists with unsorted items added to the end.

Notes

[1] Owen Astrachan. Bubble Sort: An Archaeological Algorithmic Analysis. SIGCSE 2003 Hannan Akhtar . (pdf) (http://www.cs.duke.edu/

~ola/papers/bubble.pdf)

[2] Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, Second Edition. Addison-Wesley, 1998. ISBN

0-201-89685-0. Pages 106—110 of section 5.2.2: Sorting by Exchanging.

[3] http://www.cs.sunysb.edu/~algorith/implement/handbook/distrib/handbook/algs/4/411b.sort.c.html
[4] http://www.jargon.net/jargonfile/b/bogo-sort.html

References

Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, Third Edition.
Addison-Wesley, 1997. ISBN 0-201-89685-0. Pages 106—110 of section 5.2.2: Sorting by Exchanging.
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,
Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Problem 2-2, pg.38.

Sorting in the Presence of Branch Prediction and Caches (https://www.cs.tcd.ie/publications/tech-reports/
reports.05/TCD-CS-2005-57.pdf)

External links

Bubble Sort implemented in 34 languages (http://codecodex.com/wiki/Bubble_sort)

Softpanorama bubblesort page (http://www.softpanorama.org/Algorithms/Sorting/bubblesort.shtml)
Mlustrated explanation of Bubble sort (http://www.algolist.com/Bubble_sort)

Pictorial step by step procedure of Bubble sort (http://electrofriends.com/source-codes/software-programs/c/
sorting-programs/program-to-sort-the-numbers-using-bubble-sort/)

Animated Sorting Algorithms: Bubble Sort (http://www.sorting-algorithms.com/bubble-sort) — graphical
demonstration and discussion of bubble sort

Lafore's Bubble Sort (http://lecture.ecc.u-tokyo.ac.jp/~ueda/JavaApplet/BubbleSort.html) (Java applet
animation)

A colored graphical Java applet (http://coderaptors.com/?BubbleSort) which allows experimentation with

initial state and shows statistics



http://en.wikipedia.org/w/index.php?title=Odd-even_sort
http://www.cs.duke.edu/~ola/papers/bubble.pdf
http://www.cs.duke.edu/~ola/papers/bubble.pdf
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=The_Art_of_Computer_Programming
http://www.cs.sunysb.edu/~algorith/implement/handbook/distrib/handbook/algs/4/411b.sort.c.html
http://www.jargon.net/jargonfile/b/bogo-sort.html
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=Thomas_H._Cormen
http://en.wikipedia.org/w/index.php?title=Charles_E._Leiserson
http://en.wikipedia.org/w/index.php?title=Ronald_L._Rivest
http://en.wikipedia.org/w/index.php?title=Clifford_Stein
http://en.wikipedia.org/w/index.php?title=Introduction_to_Algorithms
https://www.cs.tcd.ie/publications/tech-reports/reports.05/TCD-CS-2005-57.pdf
https://www.cs.tcd.ie/publications/tech-reports/reports.05/TCD-CS-2005-57.pdf
http://codecodex.com/wiki/Bubble_sort
http://www.softpanorama.org/Algorithms/Sorting/bubblesort.shtml
http://www.algolist.com/Bubble_sort
http://electrofriends.com/source-codes/software-programs/c/sorting-programs/program-to-sort-the-numbers-using-bubble-sort/
http://electrofriends.com/source-codes/software-programs/c/sorting-programs/program-to-sort-the-numbers-using-bubble-sort/
http://www.sorting-algorithms.com/bubble-sort
http://lecture.ecc.u-tokyo.ac.jp/~ueda/JavaApplet/BubbleSort.html
http://coderaptors.com/?BubbleSort

Article Sources and Contributors

Article Sources and Contributors

Bubble sort Source: http://en.wikipedia.org/w/index.php?0ldid=406324409 Contributors: 4wajzkd02, Abu adam, Adam Zivner, Adamuu, AdmN, Adrian.hawryluk, Agorf, Ahy1, Alansohn,
Alexius08, Alfie66, Allen3, Ambassadorl, Amrish deep, Andre Engels, Andrejj, Andres, Anti-Nationalist, Arvindn, AxelBoldt, Beetstra, Billaaa, Black Falcon, Blaisorblade, Booyabazooka,
Bpapa2, BrianWilloughby, BrokenSegue, Bubble snipe, Buddhikaeport, CJLL Wright, Cacophony, Carey Evans, Centrx, Ceros, Charles yiming, Cl2ha, Cloudrunner, Clx321, Conversion script,
Copysan, CountingPine, Crashmatrix, Cwolfsheep, DVdm, Daniel Brockman, Dantheox, Dcoetzee, DevastatorIIC, DivideByZero14, Djh2400, Drjan, Dudesleeper, E2eamon, EEMIV, ESkog,
Eequor, Encyclopediamonitor, Everard Proudfoot, Foobar, Fredrik, FvdP, GLmathgrant, Garas, Gargaj, Garyzx, Gdavidp, Giftlite, Glrx, Grendelkhan, Hannan1212, Happypal, Hari, Hashar,
Hate123veteran, Hefo, Hertz1888, I dream of horses, TanOsgood, Intel4004, Isis, J.delanoy, Jafet, Jdb67usa, Jellyworld, Jeltz, Jerazol, Jerk111, Jeronimo, Jevy1234, Jmallios, Jmartinezot, Jni,
Josecgomez, Josh Kehn, Jossi, Justin W Smith, Kaare, Kan8eDie, Kizor, Klrste, Knutux, Kragen, Krithin, Kuru, L Kensington, LOL, Lailsonbm, LarsMarius, Lee Daniel Crocker, Liao, Looxix,
Louis Kyu Won Ryu, Mahanthil, Mantipula, Marc van Leeuwen, Materialscientist, Mattbash, Merovingian, Michael Hardy, Mortense, Mshonle, NeilFraser, NellieBly, Newuserwiki,
NickShaforostoff, Nixdorf, Nmnogueira, Noisylo65, Nuno Tavares, Octahedron80, Oddity-, Officialhopsof, Ohnoitsjamie, Olaolaola, Oli Filth, Oskar Sigvardsson, Oxaric, Oguz Ergin, Palit
Suchitto, Panzi, Paranomia, PauliKL, Pedro, Pfalstad, Philip Trueman, Prestonmag, Psym, Pt, QFlyer, Quaestor, Quang thai, Quasipalm, Qxz, Qz, RTBarnard, Reedy, Rhanekom, Richie,
Ronhjones, Ruolin59, Ryk, SPTWriter, Saithhasan, Sam Hocevar, Sandyjee, Santhoshreddym, Shearsongs78, Shreevatsa, Silly rabbit, Simeon, SiobhanHansa, Sjakkalle, Sligocki, So God created
Manchester, Spammyammy, Spiff, Stebbins, Stephenb, Super-Magician, Swift, THEN WHO WAS PHONE?, Themania, Tide rolls, Timwi, Toxin1000, Two Bananas, Udirock, Uranographer,
Userabc, Vdaghan, Vexis, Virus326, Voyevoda, VzjrZ, Waldir, Wangbing7928, Washa rednecks, Who then was a gentleman?, WikHead, Ww, XP1, Ycl6, Yuval madar, Zaphod Beeblebrox,
ZeroOne, Ztothefifth, 492 anonymous edits

Image Sources, Licenses and Contributors

File:Bubblesort-edited.png Source: http://en.wikipedia.org/w/index.php?title=File:Bubblesort-edited.png License: Public Domain Contributors: User:Crashmatrix

File:Bubble sort animation.gif Source: http://en.wikipedia.org/w/index.php?title=File:Bubble_sort_animation.gif License: Creative Commons Attribution-Sharealike 2.5 Contributors: Original
uploader was Nmnogueira at en.wikipedia

License

Creative Commons Attribution-Share Alike 3.0 Unported
http://creativecommons.org/licenses/by-sa/3.0/



http://creativecommons.org/licenses/by-sa/3.0/

	Bubble sort
	Analysis
	Performance 
	Rabbits and turtles
	Step-by-step example

	Implementation 
	Pseudocode implementation 
	Optimizing bubble sort 

	In practice
	Variations 
	Notes 
	References 
	External links

	License

