
Cocktail sort 1

Cocktail sort

Class Sorting algorithm

Data structure Array

Worst case performance О(n²)

Cocktail sort, also known as bidirectional bubble sort, cocktail shaker sort, shaker sort (which can also refer to
a variant of selection sort), ripple sort, shuttle sort or happy hour sort, is a variation of bubble sort that is both a
stable sorting algorithm and a comparison sort. The algorithm differs from bubble sort in that it sorts in both
directions on each pass through the list. This sorting algorithm is only marginally more difficult to implement than
bubble sort, and solves the problem with so-called turtles in bubble sort.

Pseudocode
The simplest form of cocktail sort goes through the whole list each time:

procedure cocktailSort(A : list of sortable items) defined as:

 do

 swapped := false

 for each i in 0 to length(A) - 2 do:

 if A[i] > A[i + 1] then // test whether the two elements are in the wrong order

 swap(A[i], A[i + 1]) // let the two elements change places

 swapped := true

 end if

 end for

 if swapped = false then

 // we can exit the outer loop here if no swaps occurred.

 break do-while loop

 end if

 swapped := false

 for each i in length(A) - 2 to 0 do:

 if A[i] > A[i + 1] then

 swap(A[i], A[i + 1])

 swapped := true

 end if

 end for

 while swapped // if no elements have been swapped, then the list is sorted

end procedure

The first rightward pass will shift the largest element to its correct place at the end, and the following leftward pass
will shift the smallest element to its correct place at the beginning. The second complete pass will shift the second
largest and second smallest elements to their correct places, and so on. After i passes, the first i and the last i
elements in the list are in their correct positions, and do not need to be checked. By shortening the part of the list that
is sorted each time, the number of operations can be halved (see bubble sort).

procedure cocktailSort(A : list of sortable items) defined as:

 // `begin` and `end` marks the first and last index to check

 begin := -1

http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Selection_sort
http://en.wikipedia.org/w/index.php?title=Bubble_sort
http://en.wikipedia.org/w/index.php?title=Stable_sort
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=Comparison_sort
http://en.wikipedia.org/w/index.php?title=Bubble_sort
http://en.wikipedia.org/w/index.php?title=Bubble_sort%23Rabbits_and_turtles
http://en.wikipedia.org/w/index.php?title=Bubble_sort%23Alternative_implementations

Cocktail sort 2

 end := length(A) - 2

 do

 swapped := false

 // increases `begin` because the elements before `begin` are in correct order

 begin := begin + 1

 for each i in begin to end do:

 if A[i] > A[i + 1] then

 swap(A[i], A[i + 1])

 swapped := true

 end if

 end for

 if swapped = false then

 break do-while loop

 end if

 swapped := false

 // decreases `end` because the elements after `end` are in correct order

 end := end - 1

 for each i in end to begin do:

 if A[i] > A[i + 1] then

 swap(A[i], A[i + 1])

 swapped := true

 end if

 end for

 while swapped

end procedure

Differences from bubble sort
Cocktail sort is a slight variation of bubble sort. It differs in that instead of repeatedly passing through the list from
bottom to top, it passes alternately from bottom to top and then from top to bottom. It can achieve slightly better
performance than a standard bubble sort. The reason for this is that bubble sort only passes through the list in one
direction and therefore can only move items backward one step each iteration.
An example of a list that proves this point is the list (2,3,4,5,1), which would only need to go through one pass of
cocktail sort to become sorted, but if using an ascending bubble sort would take four passes. However one cocktail
sort pass should be counted as two bubble sort passes. Typically cocktail sort is less than two times faster than
bubble sort.
Another optimization can be that the algorithm remembers where the last actual swap has been done. In the next
iteration, there will be no swaps beyond this limit and the algorithm has shorter passes. As the Cocktail sort goes
bidirectionally, the range of possible swaps, which is the range to be tested, will reduce per pass, thus reducing the
overall running time.

http://en.wikipedia.org/w/index.php?title=Bubble_sort
http://en.wikipedia.org/w/index.php?title=Bubble_sort
http://en.wikipedia.org/w/index.php?title=Bubble_sort

Cocktail sort 3

Complexity
The complexity of cocktail sort in big O notation is for both the worst case and the average case, but it
becomes closer to if the list is mostly ordered before applying the sorting algorithm, for example, if every
element is at a position that differs at most k (k ≥ 1) from the position it is going to end up in, the complexity of
cocktail sort becomes .
Cocktail sort is also briefly discussed in the book The Art of Computer Programming, along with similar refinements
of bubble sort. In conclusion, Knuth states about bubble sort and its improvements (Knuth 1998, p. 110):

“ But none of these refinements leads to an algorithm better than straight insertion [that is, insertion sort]; and we already know that straight
insertion isn't suitable for large N. [...] In short, the bubble sort seems to have nothing to recommend it, except a catchy name and the fact
that it leads to some interesting theoretical problems. ”

—D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, Second Edition, Addison-Wesley, 1998.

References
• Paul E. Black and Bob Bockholt, "bidirectional bubble sort" [1], in Dictionary of Algorithms and Data Structures

(online), Paul E. Black, ed., U.S. National Institute of Standards and Technology. 24 August 2009. (accessed: 5
Feb 2010)

External links
• Java source code and an animated demo of cocktail sort (called bi-directional bubble sort) and several other

algorithms [2]

• .NET Implementation of cocktail sort and several other algorithms [3]

• Interactive demo of cocktail sort [4]

References
[1] http:/ / www. itl. nist. gov/ div897/ sqg/ dads/ HTML/ bidirectionalBubbleSort. html
[2] http:/ / www. cs. ubc. ca/ ~harrison/ Java/ sorting-demo. html
[3] http:/ / www. sharpdeveloper. net/ content/ archive/ 2007/ 08/ 14/ dot-net-data-structures-and-algorithms. aspx
[4] http:/ / www. tcs. ifi. lmu. de/ ~gruberh/ lehre/ sorting/ Shaker/ Shaker. html

http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=The_Art_of_Computer_Programming
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://www.itl.nist.gov/div897/sqg/dads/HTML/bidirectionalBubbleSort.html
http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
http://www.sharpdeveloper.net/content/archive/2007/08/14/dot-net-data-structures-and-algorithms.aspx
http://www.tcs.ifi.lmu.de/~gruberh/lehre/sorting/Shaker/Shaker.html
http://www.itl.nist.gov/div897/sqg/dads/HTML/bidirectionalBubbleSort.html
http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
http://www.sharpdeveloper.net/content/archive/2007/08/14/dot-net-data-structures-and-algorithms.aspx
http://www.tcs.ifi.lmu.de/~gruberh/lehre/sorting/Shaker/Shaker.html

Article Sources and Contributors 4

Article Sources and Contributors
Cocktail sort Source: http://en.wikipedia.org/w/index.php?oldid=403012007 Contributors: Aamargulies, Alan Liefting, Booyabazooka, BrokenSegue, CAPS LOCK, CJLL Wright, Cooltude,
Dcoetzee, DevastatorIIC, Gamma, Graue, Grendelkhan, Guiguan, Hermel, Honeyman, Kri, Magnus.de, Mrwojo, Nocklas, Obscuranym, Orderud, Oskar Sigvardsson, Oxaric, Oğuz Ergin,
Peter4341, Quuxplusone, R sirahata, Rhanekom, Roshan Shariff, Shabble, Silly rabbit, SiobhanHansa, Smjg, Stassats, Svick, Timwi, Tiny green, Zhaladshar, Олександр Кравчук, 46 anonymous
edits

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

	Cocktail sort
	Pseudocode
	Differences from bubble sort
	Complexity
	References
	External links

	License

