
Insertion sort 1

Insertion sort

Example of insertion sort sorting a list of random numbers.

Class Sorting algorithm

Data structure Array

Worst case performance О(n2)

Best case performance O(n)

Average case performance О(n2)

Worst case space complexity О(n) total, O(1) auxiliary

Insertion sort is a simple sorting algorithm: a comparison sort in which the sorted array (or list) is built one entry at
a time. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge
sort. However, insertion sort provides several advantages:
• Simple implementation
• Efficient for (quite) small data sets
• Adaptive, i.e. efficient for data sets that are already substantially sorted: the time complexity is O(n + d), where d

is the number of inversions
• More efficient in practice than most other simple quadratic, i.e. O(n2) algorithms such as selection sort or bubble

sort; the best case (nearly sorted input) is O(n)
• Stable, i.e. does not change the relative order of elements with equal keys
• In-place, i.e. only requires a constant amount O(1) of additional memory space
• Online, i.e. can sort a list as it receives it
Most humans when sorting—ordering a deck of cards, for example—use a method that is similar to insertion sort.[1]

http://en.wikipedia.org/w/index.php?title=File:Insertionsort-edited.png
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=Comparison_sort
http://en.wikipedia.org/w/index.php?title=Quicksort
http://en.wikipedia.org/w/index.php?title=Heapsort
http://en.wikipedia.org/w/index.php?title=Merge_sort
http://en.wikipedia.org/w/index.php?title=Merge_sort
http://en.wikipedia.org/w/index.php?title=Adaptive_sort
http://en.wikipedia.org/w/index.php?title=Time_complexity
http://en.wikipedia.org/w/index.php?title=Inversion_%28discrete_mathematics%29
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Selection_sort
http://en.wikipedia.org/w/index.php?title=Bubble_sort
http://en.wikipedia.org/w/index.php?title=Bubble_sort
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Stable_sort
http://en.wikipedia.org/w/index.php?title=In-place_algorithm
http://en.wikipedia.org/w/index.php?title=Online_algorithm

Insertion sort 2

Algorithm
Every repetition of insertion sort removes an element from the input data, inserting it into the correct position in the
already-sorted list, until no input elements remain. The choice of which element to remove from the input is
arbitrary, and can be made using almost any choice algorithm.
Sorting is typically done in-place. The resulting array after k iterations has the property where the first k + 1 entries
are sorted. In each iteration the first remaining entry of the input is removed, inserted into the result at the correct
position, thus extending the result:

becomes

with each element greater than x copied to the right as it is compared against x.
The most common variant of insertion sort, which operates on arrays, can be described as follows:
1. Suppose there exists a function called Insert designed to insert a value into a sorted sequence at the beginning of

an array. It operates by beginning at the end of the sequence and shifting each element one place to the right until
a suitable position is found for the new element. The function has the side effect of overwriting the value stored
immediately after the sorted sequence in the array.

2. To perform an insertion sort, begin at the left-most element of the array and invoke Insert to insert each element
encountered into its correct position. The ordered sequence into which the element is inserted is stored at the
beginning of the array in the set of indices already examined. Each insertion overwrites a single value: the value
being inserted.

Pseudocode of the complete algorithm follows, where the arrays are zero-based and the for-loop includes both the
top and bottom limits (as in Pascal):

insertionSort(array A)

{ This procedure sorts in ascending order. }

begin

 for i := 1 to length[A]-1 do

 begin

 value := A[i];

 j := i - 1;

 done := false;

 repeat

 { To sort in descending order simply reverse

 the operator i.e. A[j] < value }

 if A[j] > value then

 begin

 A[j + 1] := A[j];

 j := j - 1;

 if j < 0 then

 done := true;

 end

http://en.wikipedia.org/w/index.php?title=File:Insertionsort-before.png
http://en.wikipedia.org/w/index.php?title=File:Insertionsort-after.png
http://en.wikipedia.org/w/index.php?title=Pseudocode
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29

Insertion sort 3

 else

 done := true;

 until done;

 A[j + 1] := value;

 end;

end;

Below is the pseudocode for insertion sort for a zero-based array (as in C):

1. for j ←1 to length(A)-1

2. key ← A[j]
3. > A[j] is added in the sorted sequence A[1, .. j-1]

4. i ← j - 1
5. while i >= 0 and A [i] > key

6. A[i +1] ← A[i]
7. i ← i -1
8. A [i +1] ← key

Best, worst, and average cases

Graphical example.

The best case input is an array that is already
sorted. In this case insertion sort has a linear
running time (i.e., Θ(n)). During each iteration,
the first remaining element of the input is only
compared with the right-most element of the
sorted subsection of the array.

The worst case input is an array sorted in reverse
order. In this case every iteration of the inner
loop will scan and shift the entire sorted
subsection of the array before inserting the next
element. For this case insertion sort has a
quadratic running time (i.e., O(n2)).

The average case is also quadratic, which makes
insertion sort impractical for sorting large arrays.
However, insertion sort is one of the fastest
algorithms for sorting very small arrays, even
faster than quick sort; indeed, good quick sort implementations use insertion sort for arrays smaller than a certain
threshold, also when arising as subproblems; the exact threshold must be determined experimentally and depends on
the machine, but is commonly around ten.

Example: The following table shows the steps for sorting the sequence {5, 7, 0, 3, 4, 2, 6, 1}. For each iteration, the
number of positions the inserted element has moved is shown in parentheses. Altogether this amounts to 17 steps.
5 7 0 3 4 2 6 1 (0)
5 7 0 3 4 2 6 1 (0)
0 5 7 3 4 2 6 1 (2)
0 3 5 7 4 2 6 1 (2)
0 3 4 5 7 2 6 1 (2)

http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=File:Insertion_sort_animation.gif
http://en.wikipedia.org/w/index.php?title=Big_Theta_notation
http://en.wikipedia.org/w/index.php?title=Quick_sort
http://en.wikipedia.org/w/index.php?title=Quick_sort

Insertion sort 4

0 2 3 4 5 7 6 1 (4)
0 2 3 4 5 6 7 1 (1)
0 1 2 3 4 5 6 7 (6)

Comparisons to other sorting algorithms
Insertion sort is very similar to selection sort. As in selection sort, after k passes through the array, the first k
elements are in sorted order. For selection sort these are the k smallest elements, while in insertion sort they are
whatever the first k elements were in the unsorted array. Insertion sort's advantage is that it only scans as many
elements as needed to determine the correct location of the k+1th element, while selection sort must scan all
remaining elements to find the absolute smallest element.
Calculations show that insertion sort will usually perform about half as many comparisons as selection sort.
Assuming the k+1th element's rank is random, insertion sort will on average require shifting half of the previous k
elements, while selection sort always requires scanning all unplaced elements. If the input array is reverse-sorted,
insertion sort performs as many comparisons as selection sort. If the input array is already sorted, insertion sort
performs as few as n-1 comparisons, thus making insertion sort more efficient when given sorted or "nearly-sorted"
arrays.
While insertion sort typically makes fewer comparisons than selection sort, it requires more writes because the inner
loop can require shifting large sections of the sorted portion of the array. In general, insertion sort will write to the
array O(n2) times, whereas selection sort will write only O(n) times. For this reason selection sort may be preferable
in cases where writing to memory is significantly more expensive than reading, such as with EEPROM or flash
memory.
Some divide-and-conquer algorithms such as quicksort and mergesort sort by recursively dividing the list into
smaller sublists which are then sorted. A useful optimization in practice for these algorithms is to use insertion sort
for sorting small sublists, where insertion sort outperforms these more complex algorithms. The size of list for which
insertion sort has the advantage varies by environment and implementation, but is typically between eight and twenty
elements.

Variants
D.L. Shell made substantial improvements to the algorithm; the modified version is called Shell sort. The sorting
algorithm compares elements separated by a distance that decreases on each pass. Shell sort has distinctly improved
running times in practical work, with two simple variants requiring O(n3/2) and O(n4/3) running time.
If the cost of comparisons exceeds the cost of swaps, as is the case for example with string keys stored by reference
or with human interaction (such as choosing one of a pair displayed side-by-side), then using binary insertion sort
may yield better performance. Binary insertion sort employs a binary search to determine the correct location to
insert new elements, and therefore performs comparisons in the worst case, which is Θ(n log n). The
algorithm as a whole still has a running time of Θ(n2) on average because of the series of swaps required for each
insertion.
The number of swaps can be reduced by calculating the position of multiple elements before moving them. For
example, if the target position of two elements is calculated before they are moved into the right position, the number
of swaps can be reduced by about 25% for random data. In the extreme case, this variant works similar to merge sort.
To avoid having to make a series of swaps for each insertion, the input could be stored in a linked list, which allows
elements to be inserted and deleted in constant-time. However, performing a binary search on a linked list is
impossible because a linked list does not support random access to its elements; therefore, the running time required
for searching is O(n2). If a more sophisticated data structure (e.g., heap or binary tree) is used, the time required for
searching and insertion can be reduced significantly; this is the essence of heap sort and binary tree sort.

http://en.wikipedia.org/w/index.php?title=Selection_sort
http://en.wikipedia.org/w/index.php?title=Selection_sort
http://en.wikipedia.org/w/index.php?title=EEPROM
http://en.wikipedia.org/w/index.php?title=Flash_memory
http://en.wikipedia.org/w/index.php?title=Flash_memory
http://en.wikipedia.org/w/index.php?title=Divide-and-conquer_algorithm
http://en.wikipedia.org/w/index.php?title=Quicksort
http://en.wikipedia.org/w/index.php?title=Mergesort
http://en.wikipedia.org/w/index.php?title=Donald_Shell
http://en.wikipedia.org/w/index.php?title=Shell_sort
http://en.wikipedia.org/w/index.php?title=Binary_search
http://en.wikipedia.org/w/index.php?title=Merge_sort
http://en.wikipedia.org/w/index.php?title=Linked_list
http://en.wikipedia.org/w/index.php?title=Data_structure
http://en.wikipedia.org/w/index.php?title=Heap_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Binary_tree
http://en.wikipedia.org/w/index.php?title=Heap_sort
http://en.wikipedia.org/w/index.php?title=Binary_tree_sort

Insertion sort 5

In 2004 Bender, Farach-Colton, and Mosteiro published a new variant of insertion sort called library sort or gapped
insertion sort that leaves a small number of unused spaces (i.e., "gaps") spread throughout the array. The benefit is
that insertions need only shift elements over until a gap is reached. The authors show that this sorting algorithm runs
with high probability in O(n log n) time.[2]

References
[1] Robert Sedgewick, Algorithms, Addison-Wesley 1983 (chapter 8 p. 95)
[2] http:/ / citeseerx. ist. psu. edu/ viewdoc/ summary?doi=10. 1. 1. 9. 3665

• Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, Second Edition.
Addison-Wesley, 1998. ISBN 0-201-89685-0. Section 5.2.1: Sorting by Insertion, pp. 80–105.

• Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,
Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 2.1: Insertion sort, pp. 15–21.

• Bender, Michael A.; Farach-Colton, Martín; Mosteiro, Miguel, Insertion Sort is O(n log n) (http:/ / www. cs.
sunysb. edu/ ~bender/ pub/ TOCS06-librarysort. pdf)

External links
• Binary Insertion Sort - Scoreboard (http:/ / www. pathcom. com/ ~vadco/ binary. html) – Complete Investigation

and C Implementation – By JohnPaul Adamovsky
• Insertion Sort in C with demo (http:/ / electrofriends. com/ source-codes/ software-programs/ c/ sorting-programs/

program-to-sort-the-numbers-using-insertion-sort/) - Insertion Sort in C with demo
• Insertion Sort (http:/ / corewar. co. uk/ assembly/ insertion. htm) - a comparison with other O(n^2) sorting

algorithms
• Animated Sorting Algorithms: Insertion Sort (http:/ / www. sorting-algorithms. com/ insertion-sort) – graphical

demonstration and discussion of insertion sort
• Category:Insertion Sort - LiteratePrograms (http:/ / literateprograms. org/ Category:Insertion_sort) –

implementations of insertion sort in various programming languages
• InsertionSort (http:/ / coderaptors. com/ ?InsertionSort) – colored, graphical Java applet that allows

experimentation with the initial input and provides statistics
• Sorting Algorithms Demo (http:/ / www. cs. ubc. ca/ spider/ harrison/ Java/ sorting-demo. html) – visual

demonstrations of sorting algorithms (implemented in Java)
• Insertion sort illustrated explanation. Java and C++ implementations. (http:/ / www. algolist. net/ Algorithms/

Sorting/ Insertion_sort)

http://en.wikipedia.org/w/index.php?title=Library_sort
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.3665
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=Thomas_H._Cormen
http://en.wikipedia.org/w/index.php?title=Charles_E._Leiserson
http://en.wikipedia.org/w/index.php?title=Ronald_L._Rivest
http://en.wikipedia.org/w/index.php?title=Clifford_Stein
http://en.wikipedia.org/w/index.php?title=Introduction_to_Algorithms
http://www.cs.sunysb.edu/~bender/pub/TOCS06-librarysort.pdf
http://www.cs.sunysb.edu/~bender/pub/TOCS06-librarysort.pdf
http://www.pathcom.com/~vadco/binary.html
http://electrofriends.com/source-codes/software-programs/c/sorting-programs/program-to-sort-the-numbers-using-insertion-sort/
http://electrofriends.com/source-codes/software-programs/c/sorting-programs/program-to-sort-the-numbers-using-insertion-sort/
http://corewar.co.uk/assembly/insertion.htm
http://www.sorting-algorithms.com/insertion-sort
http://literateprograms.org/Category:Insertion_sort
http://coderaptors.com/?InsertionSort
http://www.cs.ubc.ca/spider/harrison/Java/sorting-demo.html
http://www.algolist.net/Algorithms/Sorting/Insertion_sort
http://www.algolist.net/Algorithms/Sorting/Insertion_sort

Article Sources and Contributors 6

Article Sources and Contributors
Insertion sort Source: http://en.wikipedia.org/w/index.php?oldid=405035678 Contributors: 1qaz-pl, 24.252.226.xxx, Ahy1, Alansohn, Aleks80, Alex.atkins, Alex.mccarthy, Alexius08, Allan
McInnes, Altenmann, Andre Engels, Andres, Apanag, Arthena, Arthur Rubin, Asdquefty, AxelBoldt, Baby123412, Baltar, Gaius, Barras, Baruneju, BiT, Billylikeswikis, Black Falcon,
Blaisorblade, Bobo192, Booyabazooka, Brambleclawx, BrokenSegue, Buddhikaeport, CJLL Wright, Carey Evans, Ceros, Chet Gray, Colinb, Conversion script, Crashmatrix, Cyde, DFRussia,
Damian Yerrick, Daniel Brockman, Daniel Quinlan, Dardasavta, David Eppstein, DavidGrayson, Dcoetzee, DevastatorIIC, Doradus, E.ruzi, Eequor, El C, Emdtechnology, Eric119, Faizbash,
Fangyuan1st, Freakingtips, Fredrik, Frozenport, Garyzx, Giftlite, Glrx, Gmazeroff, Goutamrocks, GregorB, Groffles, H.ehsaan, HJ Mitchell, Hannes Hirzel, Hardmath, Hari, Harrisonmetz,
HereToHelp, Hydrogen Iodide, I do not exist, Int19h, Ivan Pozdeev, Jarajapu, Jashar, Jesin, Jonas Kölker, Jordanbray, JosephMDecock, Josh Kehn, Jpmelos, KBKarma, Kangaroosrule, Karl
Dickman, Keynell, Killiondude, Kiwi137, Klrste, Knuckles, Knutux, Kostmo, Kpjas, Kragen, Kri, LOL, Lawlzlawlz, Lidden, Looxix, Magicbronson, Merendoglu, Mess, Michael Hardy, Michael
Slone, Mike1242, Mike1341, Minchenko Michael, Mollmerx, MorganGreen, Nasradu8, Neel basu, Nillerdk, Ninjakannon, Nixdorf, Nmnogueira, Nordald, Nuggetboy, Nuxnut, Ohnoitsjamie, Oli
Filth, Oskar Sigvardsson, Oxaric, Oğuz Ergin, Pcp071098, Pdvyas, Pharaoh of the Wizards, Phil Boswell, PhilippWeissenbacher, Piet Delport, Pinball22, Pion, Pipedreambomb, Player 03,
Ponggr, Pred, Pulveriser, Quentonamos, Qz, Ratheesh nan, Reidhoch, Rhanekom, Rlneumiller, Ruud Koot, SLi, Sapeur, Sfan00 IMG, SheldonYoung, Silly rabbit, Simetrical, SiobhanHansa,
Sligocki, Smalljim, Smjg, Steven Zhang, Svick, Swift, Tamer ih, Ted Longstaffe, ThomasMueller, Tiddly Tom, Timwi, Tjwood, Tryptophan4, VTBassMatt, Vasiľ, Virtualblackfox, Vpshastry,
Werdna, WookieInHeat, Ww, Ww2censor, XP1, XreDuex, Yandman, Zaradaqaw, ZeroOne, Zhou Yu, Zowayix, Zvar, 326 anonymous edits

Image Sources, Licenses and Contributors
File:Insertionsort-edited.png Source: http://en.wikipedia.org/w/index.php?title=File:Insertionsort-edited.png License: Public Domain Contributors: User:Crashmatrix
Image:insertionsort-before.png Source: http://en.wikipedia.org/w/index.php?title=File:Insertionsort-before.png License: Public Domain Contributors: Original uploader was Dcoetzee at
en.wikipedia
Image:insertionsort-after.png Source: http://en.wikipedia.org/w/index.php?title=File:Insertionsort-after.png License: Public Domain Contributors: Original uploader was Dcoetzee at
en.wikipedia
Image:Insertion sort animation.gif Source: http://en.wikipedia.org/w/index.php?title=File:Insertion_sort_animation.gif License: Creative Commons Attribution-Sharealike 2.5 Contributors:
Original uploader was Nmnogueira at en.wikipedia

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

	Insertion sort
	Algorithm
	Best, worst, and average cases
	Comparisons to other sorting algorithms
	Variants
	References
	External links

	License

