
Merge sort 1

Merge sort

Example of merge sort sorting a list of random dots.
Class Sorting algorithm

Data structure Array

Worst case performance O(n log n)

Best case performance O(n log n) typical, O(n) natural variant

Average case performance O(n log n)

Worst case space complexity O(n) auxiliary

Merge sort is an O(n log n) comparison-based sorting algorithm. Most implementations produce a stable sort,
meaning that the implementation preserves the input order of equal elements in the sorted output. It is a divide and
conquer algorithm. Merge sort was invented by John von Neumann in 1945.[1]

Algorithm
Conceptually, a merge sort works as follows
1. If the list is of length 0 or 1, then it is already sorted. Otherwise:
2. Divide the unsorted list into two sublists of about half the size.
3. Sort each sublist recursively by re-applying merge sort.
4. Merge the two sublists back into one sorted list.
Merge sort incorporates two main ideas to improve its runtime:
1. A small list will take fewer steps to sort than a large list.
2. Fewer steps are required to construct a sorted list from two sorted lists than two unsorted lists. For example, you

only have to traverse each list once if they're already sorted (see the merge function below for an example
implementation).

Example: Using merge sort to sort a list of integers contained in an array:

Suppose we have an array A with n indices ranging from to . We apply merge sort to and
where c is the integer part of . When the two halves are returned they will have been sorted.

They can now be merged together to form a sorted array.
In a simple pseudocode form, the algorithm could look something like this:

function merge_sort(m)

 if length(m) ≤ 1
 return m

 var list left, right, result

http://en.wikipedia.org/w/index.php?title=File:Merge_sort_animation2.gif
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Comparison_sort
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm%23Classification
http://en.wikipedia.org/w/index.php?title=Divide_and_conquer_algorithm
http://en.wikipedia.org/w/index.php?title=Divide_and_conquer_algorithm
http://en.wikipedia.org/w/index.php?title=John_von_Neumann
http://en.wikipedia.org/w/index.php?title=Recursion
http://en.wikipedia.org/w/index.php?title=Merge_algorithm
http://en.wikipedia.org/w/index.php?title=Merge_algorithm
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Pseudocode

Merge sort 2

 var integer middle = length(m) / 2

 for each x in m up to middle

 add x to left

 for each x in m after middle

 add x to right

 left = merge_sort(left)

 right = merge_sort(right)

 result = merge(left, right)

 return result

Following writing merge_sort function, then it is required to merge both the left and right lists created above. There
are several variants for the merge() function; one possibility is this:

function merge(left,right)

 var list result

 while length(left) > 0 or length(right) > 0

 if length(left) > 0 and length(right) > 0

 if first(left) ≤ first(right)
 append first(left) to result

 left = rest(left)

 else

 append first(right) to result

 right = rest(right)

 else if length(left) > 0

 append first(left) to result

 left = rest(left)

 else if length(right) > 0

 append first(right) to result

 right = rest(right)

 end while

 return result

Merge sort 3

Analysis

A recursive merge sort algorithm used to sort an array of 7 integer values. These
are the steps a human would take to emulate merge sort (top-down).

In sorting n objects, merge sort has an
average and worst-case performance of
O(n log n). If the running time of merge sort
for a list of length n is T(n), then the
recurrence T(n) = 2T(n/2) + n follows from
the definition of the algorithm (apply the
algorithm to two lists of half the size of the
original list, and add the n steps taken to
merge the resulting two lists). The closed
form follows from the master theorem.

In the worst case, merge sort does an
amount of comparisons equal to or slightly
smaller than (n ⌈lg n⌉ - 2⌈lg n⌉ + 1), which is
between (n lg n - n + 1) and (n lg n + n +
O(lg n)).[2]

For large n and a randomly ordered input list, merge sort's expected (average) number of comparisons approaches

α·n fewer than the worst case where

In the worst case, merge sort does about 39% fewer comparisons than quicksort does in the average case; merge sort
always makes fewer comparisons than quicksort, except in extremely rare cases, when they tie, where merge sort's
worst case is found simultaneously with quicksort's best case. In terms of moves, merge sort's worst case complexity
is O(n log n)—the same complexity as quicksort's best case, and merge sort's best case takes about half as many
iterations as the worst case.
Recursive implementations of merge sort make 2n − 1 method calls in the worst case, compared to quicksort's n, thus
merge sort has roughly twice as much recursive overhead as quicksort. However, iterative, non-recursive
implementations of merge sort, avoiding method call overhead, are not difficult to code. Merge sort's most common
implementation does not sort in place; therefore, the memory size of the input must be allocated for the sorted output
to be stored in (see below for versions that need only n/2 extra spaces).
Merge sort as described here also has an often overlooked, but practically important, best-case property. If the input
is already sorted, its complexity falls to O(n). Specifically, n-1 comparisons and zero moves are performed, which is
the same as for simply running through the input, checking if it is pre-sorted.
Sorting in-place is possible (e.g., using lists rather than arrays) but is very complicated, and will offer little
performance gains in practice, even if the algorithm runs in O(n log n) time. (Katajainen, Pasanen & Teuhola 1996)
In these cases, algorithms like heapsort usually offer comparable speed, and are far less complex. Additionally,
unlike the standard merge sort, in-place merge sort is not a stable sort. In the case of linked lists the algorithm does
not use more space than that the already used by the list representation, but the O(log(k)) used for the recursion trace.
Merge sort is more efficient than quick sort for some types of lists if the data to be sorted can only be efficiently
accessed sequentially, and is thus popular in languages such as Lisp, where sequentially accessed data structures are

http://en.wikipedia.org/w/index.php?title=File:Merge_sort_algorithm_diagram.svg
http://en.wikipedia.org/w/index.php?title=Average_performance
http://en.wikipedia.org/w/index.php?title=Worst-case_performance
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Master_theorem
http://en.wikipedia.org/w/index.php?title=Binary_logarithm
http://en.wikipedia.org/w/index.php?title=Quicksort
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Heapsort
http://en.wikipedia.org/w/index.php?title=Stable_sort
http://en.wikipedia.org/w/index.php?title=Lisp_programming_language

Merge sort 4

very common. Unlike some (efficient) implementations of quicksort, merge sort is a stable sort as long as the merge
operation is implemented properly.
As can be seen from the procedure merge sort, there are some demerits. One complaint we might raise is its use of
2n locations; the additional n locations were needed because one couldn't reasonably merge two sorted sets in place.
But despite the use of this space the algorithm must still work hard: The contents of m are first copied into left and
right and later into the list result on each invocation of merge_sort (variable names according to the pseudocode
above). An alternative to this copying is to associate a new field of information with each key (the elements in m are
called keys). This field will be used to link the keys and any associated information together in a sorted list (a key
and its related information is called a record). Then the merging of the sorted lists proceeds by changing the link
values; no records need to be moved at all. A field which contains only a link will generally be smaller than an entire
record so less space will also be used.
Another alternative for reducing the space overhead to n/2 is to maintain left and right as a combined structure, copy
only the left part of m into temporary space, and to direct the merge routine to place the merged output into m. With
this version it is better to allocate the temporary space outside the merge routine, so that only one allocation is
needed. The excessive copying mentioned in the previous paragraph is also mitigated, since the last pair of lines
before the return result statement (function merge in the pseudo code above) become superfluous.

Merge sort using tape drives

Merge sort type algorithms allowed large data
sets to be sorted on early computers that had
small random access memories by modern

standards. Records were stored on magnetic tape
and processed on banks of magnetic tape drives,

such as these IBM 729s.

An external merge sort is practical to run using tape drives as input and
output devices. It requires very little memory, and the memory
required does not depend on the number of records.

For the same reason it is also useful for sorting data on disk that is too
large to fit entirely into primary memory. On tape drives that can run
both backwards and forwards, merge passes can be run in both
directions, avoiding rewind time.

If you have four tape drives, it works as follows:
1. Divide the data to be sorted in half and put half on each of two

tapes
2. Merge individual pairs of records from the two tapes; write

two-record chunks alternately to each of the two output tapes
3. Merge the two-record chunks from the two output tapes into

four-record chunks; write these alternately to the original two input
tapes

4. Merge the four-record chunks into eight-record chunks; write these alternately to the original two output tapes
5. Repeat until you have one chunk containing all the data, sorted --- that is, for log n passes, where n is the number

of records.

For almost-sorted data on tape, a bottom-up "natural merge sort" variant of this algorithm is popular.
The bottom-up "natural merge sort" merges whatever "runs" of in-order records are already in the data. In the worst
case (reversed data), "natural merge sort" performs the same as the above—it merges individual records into
2-record chunks, then 2-record chunks into 4-record chunks, etc. In the best case (already mostly-sorted data),
"natural merge sort" merges large already-sorted chunks into even larger chunks, hopefully finishing in fewer than
log n passes.
In a simple pseudocode form, the "natural merge sort" algorithm could look something like this:

http://en.wikipedia.org/w/index.php?title=Magnetic_tape
http://en.wikipedia.org/w/index.php?title=IBM_729
http://en.wikipedia.org/w/index.php?title=File:IBM_729_Tape_Drives.nasa.jpg
http://en.wikipedia.org/w/index.php?title=External_sorting
http://en.wikipedia.org/w/index.php?title=Disk_storage
http://en.wikipedia.org/w/index.php?title=Primary_storage
http://en.wikipedia.org/w/index.php?title=Pseudocode

Merge sort 5

 # Original data is on the input tape; the other tapes are blank

 function merge_sort(input_tape, output_tape, scratch_tape_C, scratch_tape_D)

 while any records remain on the input_tape

 while any records remain on the input_tape

 merge(input_tape, output_tape, scratch_tape_C)

 merge(input_tape, output_tape, scratch_tape_D)

 while any records remain on C or D

 merge(scratch_tape_C, scratch_tape_D, output_tape)

 merge(scratch_tape_C, scratch_tape_D, input_tape)

 # take the next sorted run from the input tapes, and merge into the single given output_tape.

 # tapes are scanned linearly.

 # tape[next] gives the record currently under the read head of that tape.

 # tape[current] gives the record previously under the read head of that tape.

 # (Generally both tape[current] and tape[previous] are buffered in RAM ...)

 function merge(left[], right[], output_tape[])

 do

 if left[current] ≤ right[current]
 append left[current] to output_tape

 read next record from left tape

 else

 append right[current] to output_tape

 read next record from right tape

 while left[current] < left[next] and right[current] < right[next]

 if left[current] < left[next]

 append current_left_record to output_tape

 if right[current] < right[next]

 append current_right_record to output_tape

 return

Either form of merge sort can be generalized to any number of tapes.
A more sophisticated merge sort is the polyphase merge sort.

Optimizing merge sort
On modern computers, locality of reference can be of paramount importance in software optimization, because
multi-level memory hierarchies are used. Cache-aware versions of the merge sort algorithm, whose operations have
been specifically chosen to minimize the movement of pages in and out of a machine's memory cache, have been
proposed. For example, the tiled merge sort algorithm stops partitioning subarrays when subarrays of size S are
reached, where S is the number of data items fitting into a single page in memory. Each of these subarrays is sorted
with an in-place sorting algorithm, to discourage memory swaps, and normal merge sort is then completed in the
standard recursive fashion. This algorithm has demonstrated better performance on machines that benefit from cache
optimization. (LaMarca & Ladner 1997)
Kronrod (1969) suggested an alternative version of merge sort that uses constant additional space. This algorithm
was refined by Katajainen, Pasanen & Teuhola (1996).

http://en.wikipedia.org/w/index.php?title=Polyphase_merge_sort
http://en.wikipedia.org/w/index.php?title=Locality_of_reference
http://en.wikipedia.org/w/index.php?title=Software_optimization
http://en.wikipedia.org/w/index.php?title=Memory_hierarchy
http://en.wikipedia.org/w/index.php?title=Cache

Merge sort 6

Comparison with other sort algorithms
Although heapsort has the same time bounds as merge sort, it requires only Θ(1) auxiliary space instead of merge
sort's Θ(n), and is often faster in practical implementations. On typical modern architectures, efficient quicksort
implementations generally outperform mergesort for sorting RAM-based arrays. On the other hand, merge sort is a
stable sort, parallelizes better, and is more efficient at handling slow-to-access sequential media. Merge sort is often
the best choice for sorting a linked list: in this situation it is relatively easy to implement a merge sort in such a way
that it requires only Θ(1) extra space, and the slow random-access performance of a linked list makes some other
algorithms (such as quicksort) perform poorly, and others (such as heapsort) completely impossible.
As of Perl 5.8, merge sort is its default sorting algorithm (it was quicksort in previous versions of Perl). In Java, the
Arrays.sort() [3] methods use merge sort or a tuned quicksort depending on the datatypes and for implementation
efficiency switch to insertion sort when fewer than seven array elements are being sorted.[4] Python uses timsort,
another tuned hybrid of merge sort and insertion sort, which will also become the standard sort algorithm for Java SE
7.[5]

Utility in online sorting
Merge sort's merge operation is useful in online sorting, where the list to be sorted is received a piece at a time,
instead of all at the beginning. In this application, we sort each new piece that is received using any sorting
algorithm, and then merge it into our sorted list so far using the merge operation. However, this approach can be
expensive in time and space if the received pieces are small compared to the sorted list — a better approach in this
case is to store the list in a self-balancing binary search tree and add elements to it as they are received.

Notes
[1] Merge Sort - Wolfram MathWorld (http:/ / mathworld. wolfram. com/ MergeSort. html)
[2] The worst case number given here does not agree with that given in Knuth's Art of Computer Programming, Vol 3. The discrepancy is due to

Knuth analyzing a variant implementation of merge sort that is slightly sub-optimal
[3] http:/ / java. sun. com/ j2se/ latest/ docs/ api/ java/ util/ Arrays. html
[4] OpenJDK Subversion (https:/ / openjdk. dev. java. net/ source/ browse/ openjdk/ jdk/ trunk/ jdk/ src/ share/ classes/ java/ util/ Arrays.

java?view=markup)
[5] http:/ / hg. openjdk. java. net/ jdk7/ tl/ jdk/ rev/ bfd7abda8f79

References
• Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford (2001) [1990]. "2.3: Designing

algorithms". Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill. pp. pp. 27–37.
ISBN 0-262-03293-7.

• Katajainen, Jyrki; Pasanen, Tomi; Teuhola, Jukka (1996). "Practical in-place mergesort" (http:/ / www. diku. dk/
hjemmesider/ ansatte/ jyrki/ Paper/ mergesort_NJC. ps). Nordic Journal of Computing 3: pp. 27–40.
ISSN 1236-6064. Retrieved 2009-04-04. Also Practical In-Place Mergesort (http:/ / citeseer. ist. psu. edu/
katajainen96practical. html). Also (http:/ / citeseerx. ist. psu. edu/ viewdoc/ summary?doi=10. 1. 1. 22. 8523)

• Knuth, Donald (1998). "Section 5.2.4: Sorting by Merging". The Art of Computer Programming.
Addison-Wesley. pp. 158–168. ISBN 0-201-89685-0.

• Kronrod, M. A. (1969). "Optimal ordering algorithm without operational field". Soviet Mathematics - Doklady 10:
pp. 744

• LaMarca, A.; Ladner, R. E. (1997). "The influence of caches on the performance of sorting". Proc. 8th Ann.
ACM-SIAM Symp. on Discrete Algorithms (SODA97): 370–379

• Sun Microsystems, Inc.. "Arrays API" (http:/ / java. sun. com/ javase/ 6/ docs/ api/ java/ util/ Arrays. html).
Retrieved 2007-11-19.

http://en.wikipedia.org/w/index.php?title=Heapsort
http://en.wikipedia.org/w/index.php?title=Quicksort
http://en.wikipedia.org/w/index.php?title=Linked_list
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Java_platform
http://java.sun.com/j2se/latest/docs/api/java/util/Arrays.html
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Timsort
http://en.wikipedia.org/w/index.php?title=Online_algorithm
http://en.wikipedia.org/w/index.php?title=Self-balancing_binary_search_tree
http://mathworld.wolfram.com/MergeSort.html
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=Art_of_Computer_Programming
http://java.sun.com/j2se/latest/docs/api/java/util/Arrays.html
https://openjdk.dev.java.net/source/browse/openjdk/jdk/trunk/jdk/src/share/classes/java/util/Arrays.java?view=markup
https://openjdk.dev.java.net/source/browse/openjdk/jdk/trunk/jdk/src/share/classes/java/util/Arrays.java?view=markup
http://hg.openjdk.java.net/jdk7/tl/jdk/rev/bfd7abda8f79
http://en.wikipedia.org/w/index.php?title=Thomas_H._Cormen
http://en.wikipedia.org/w/index.php?title=Charles_E._Leiserson
http://en.wikipedia.org/w/index.php?title=Ron_Rivest
http://en.wikipedia.org/w/index.php?title=Clifford_Stein
http://en.wikipedia.org/w/index.php?title=Introduction_to_Algorithms
http://en.wikipedia.org/w/index.php?title=MIT_Press
http://en.wikipedia.org/w/index.php?title=McGraw-Hill
http://www.diku.dk/hjemmesider/ansatte/jyrki/Paper/mergesort_NJC.ps
http://www.diku.dk/hjemmesider/ansatte/jyrki/Paper/mergesort_NJC.ps
http://citeseer.ist.psu.edu/katajainen96practical.html
http://citeseer.ist.psu.edu/katajainen96practical.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.8523
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=The_Art_of_Computer_Programming
http://java.sun.com/javase/6/docs/api/java/util/Arrays.html

Merge sort 7

• Sun Microsystems, Inc.. "java.util.Arrays.java" (https:/ / openjdk. dev. java. net/ source/ browse/ openjdk/ jdk/
trunk/ jdk/ src/ share/ classes/ java/ util/ Arrays. java?view=markup). Retrieved 2007-11-19.

External links
• Merge sort in 20 languages (http:/ / www. codecodex. com/ wiki/ Merge_sort)
• Animated Sorting Algorithms: Merge Sort (http:/ / www. sorting-algorithms. com/ merge-sort) – graphical

demonstration and discussion of array-based merge sort
• Merge sort applet (http:/ / www. atkinson. yorku. ca/ ~sychen/ research/ sorting/ sortingHome. html) with level

order recursive calls to help improve algorithm analysis
• Dictionary of Algorithms and Data Structures: Merge sort (http:/ / www. nist. gov/ dads/ HTML/ mergesort. html)
• Implementation of merge sort in various languages (http:/ / www. rosettacode. org/ wiki/ Merge_sort) on Rosetta

Code
• Literate implementations of merge sort in various languages (http:/ / en. literateprograms. org/

Category:Merge_sort) on LiteratePrograms
• A colored graphical Java applet (http:/ / coderaptors. com/ ?MergeSort) which allows experimentation with initial

state and shows statistics
• Simon Tatham's explanation and code for a merge sort (http:/ / www. chiark. greenend. org. uk/ ~sgtatham/

algorithms/ listsort. html)
• MergeSort tutorial and Java code for beginners (http:/ / www. mycstutorials. com/ articles/ sorting/ mergesort)
• Merge sort Fortran routines (http:/ / www. fortran-2000. com/ rank/)

https://openjdk.dev.java.net/source/browse/openjdk/jdk/trunk/jdk/src/share/classes/java/util/Arrays.java?view=markup
https://openjdk.dev.java.net/source/browse/openjdk/jdk/trunk/jdk/src/share/classes/java/util/Arrays.java?view=markup
http://www.codecodex.com/wiki/Merge_sort
http://www.sorting-algorithms.com/merge-sort
http://www.atkinson.yorku.ca/~sychen/research/sorting/sortingHome.html
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://www.nist.gov/dads/HTML/mergesort.html
http://www.rosettacode.org/wiki/Merge_sort
http://en.wikipedia.org/w/index.php?title=Rosetta_Code
http://en.wikipedia.org/w/index.php?title=Rosetta_Code
http://en.literateprograms.org/Category:Merge_sort
http://en.literateprograms.org/Category:Merge_sort
http://coderaptors.com/?MergeSort
http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
http://www.mycstutorials.com/articles/sorting/mergesort
http://www.fortran-2000.com/rank/

Article Sources and Contributors 8

Article Sources and Contributors
Merge sort Source: http://en.wikipedia.org/w/index.php?oldid=405986390 Contributors: 192.58.206.xxx, 209.157.137.xxx, Ablonus, Abu adam, Adambro, Ahmadsh, Ahy1, Alain Amiouni,
Alansohn, Allan McInnes, Amahdy, Amiodusz, Andrei Stroe, Andy M. Wang, Antientropic, Apoorbo, ArnoldReinhold, Artagnon, Avb, Bakanov, Base698, Bayard, Bill wang1234, Black Falcon,
Bobrayner, Booyabazooka, BrokenSegue, Bubba73, C. A. Russell, CJLL Wright, CRGreathouse, Cactus.man, Caesura, Captain Fortran, Ceros, Cic, CobaltBlue, Comocomocomocomo,
Conversion script, Cuzelac, Cybercobra, DFRussia, Dammit, Damonkohler, Danakil, Daniel Geisler, Daniel Quinlan, Daztekk, Dbagnall, Dcoetzee, Deanonwiki, Decrypt3, Delldot, Destynova,
DevastatorIIC, Dima1, Discospinster, Donhalcon, Dr. Gonzo, Duckbill, EAspenwood, Easwarno1, Eleschinski2000, Erel Segal, Eric119, Eserra, Ewlyahoocom, Fashnek, Fizo86, Fred J, Fredrik,
Frencheigh, Fyyer, Garas, Garo, Garrettw87, Garyzx, Giftlite, Glrx, GraemeL, GregorB, Haham hanuka, Hariva, Hoof1341, Hyad, Immunize, Intgr, Itmozart, J.delanoy, JF Bastien, Jacobolus,
Jafet, Jengelh, Jirka6, Jleedev, Jogloran, JohnOwens, Josh Kehn, Joshk, Jpl, Kalebdf, Kbk, Kenb215, Kenyon, Klrste, Knutux, Kragen, Lee Daniel Crocker, Mattjohnson, Mav, Mecej4, Michele
bon, Mikeblas, Mikewebkist, Minesweeper, Mipadi, Miskaton, MisterSheik, Mlhetland, Mntlchaos, Mutinus, N26ankur, Naku, Negrulio, Neilc, Nguyen Thanh Quang, Nickls, Ninjatummen,
Nixeagle, Nmnogueira, NotARusski, Novas0x2a, Nuno Tavares, Nyenyec, Octotron, Ohnoitsjamie, Oli Filth, Onco p53, Onevalefan, OranL, Orderud, Oskar Sigvardsson, Oxaric, Oğuz Ergin,
PavelY, Pfalstad, Pkrecker, Quasipalm, Radiozilla, Renku, ReyBrujo, Rfl, Rhanekom, Rich Farmbrough, Rl, Romanm, Rspeer, Ruud Koot, SLi, Sam nead, Sanjay742, SashaMarievskaya,
Schorzman78, Scott Paeth, ScottBurson, Shadowjams, Shashwat2691, Shellreef, Silly rabbit, SiobhanHansa, Sir Nicholas de Mimsy-Porpington, Sirex98, Sligocki, Soultaco, Sperling,
StuartBrady, Swift, Sychen, T0m, TakuyaMurata, The Anome, Thijswijs, Thue, Timwi, TobiasPersson, Tohd8BohaithuGh1, Tomchiukc, Tommunist, UncleDouggie, Vexis, VineetKumar, Vorn,
Wilagobler, WojciechSwiderski, Worch, Ww, Xhackeranywhere, Xueshengyao, Zhaladshar, Zophar1, 368 anonymous edits

Image Sources, Licenses and Contributors
Image:Merge sort animation2.gif Source: http://en.wikipedia.org/w/index.php?title=File:Merge_sort_animation2.gif License: Creative Commons Attribution-Sharealike 2.5 Contributors:
CobaltBlue
Image:merge sort algorithm diagram.svg Source: http://en.wikipedia.org/w/index.php?title=File:Merge_sort_algorithm_diagram.svg License: Public Domain Contributors: Original uploader
was VineetKumar at en.wikipedia
File:IBM 729 Tape Drives.nasa.jpg Source: http://en.wikipedia.org/w/index.php?title=File:IBM_729_Tape_Drives.nasa.jpg License: Public Domain Contributors: NASA

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

	Merge sort
	Algorithm
	Analysis
	Merge sort using tape drives
	Optimizing merge sort
	Comparison with other sort algorithms
	Utility in online sorting
	Notes
	References
	External links

	License

