
Shell sort 1

Shell sort

Shell sort in action on a list of numbers.
Class Sorting algorithm, unstable

Data structure Array

Worst case performance depends on gap sequence. Best known:

Best case performance O(n)

Average case performance depends on gap sequence

Worst case space complexity O(n)

Shell sort is a sorting algorithm, devised by Donald Shell in 1959, that is a generalization of insertion sort, which
exploits the fact that insertion sort works efficiently on input that is already almost sorted. It improves on insertion
sort by allowing the comparison and exchange of elements that are far apart. The last step of Shell sort is a plain
insertion sort, but by then, the array of data is guaranteed to be almost sorted.
The algorithm is an example of an algorithm that is simple to code but difficult to analyze theoretically.

History
The Shell sort is named after its inventor, Donald Shell, who published the algorithm in 1959.[1] Some older
textbooks and references call this the "Shell-Metzner" sort after Marlene Metzner Norton, but according to Metzner,
"I had nothing to do with the sort, and my name should never have been attached to it."[2]

Description
The principle of Shell sort is to rearrange the file so that looking at every hth element yields a sorted file. We call
such a file h-sorted. If the file is then k-sorted for some other integer k, then the file remains h-sorted.[3] For instance,
if a list was 5-sorted and then 3-sorted, the list is now not only 3-sorted, but both 5- and 3-sorted. If this were not
true, the algorithm would undo work that it had done in previous iterations, and would not achieve such a low
running time.
The algorithm draws upon a sequence of positive integers known as the increment sequence. Any sequence will do,
as long as it ends with 1, but some sequences perform better than others.[4] The algorithm begins by performing a
gap insertion sort, with the gap being the first number in the increment sequence. It continues to perform a gap
insertion sort for each number in the sequence, until it finishes with a gap of 1. When the increment reaches 1, the
gap insertion sort is simply an ordinary insertion sort, guaranteeing that the final list is sorted. Beginning with large
increments allows elements in the file to move quickly towards their final positions, and makes it easier to
subsequently sort for smaller increments.[3]

http://en.wikipedia.org/w/index.php?title=File:Shellsort-edited.png
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm%23Stability
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Sorting_algorithm
http://en.wikipedia.org/w/index.php?title=Donald_Shell
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Donald_Shell
http://en.wikipedia.org/w/index.php?title=Marlene_Metzner_Norton
http://en.wikipedia.org/w/index.php?title=Integer
http://en.wikipedia.org/w/index.php?title=1_%28number%29
http://en.wikipedia.org/w/index.php?title=Insertion_sort

Shell sort 2

Although sorting algorithms exist that are more efficient, Shell sort remains a good choice for moderately large files
because it has good running time and is easy to code.

Shell sort algorithm in pseudocode
The following is an implementation of Shell sort written in pseudocode. The increment sequence is a geometric
sequence in which every term is roughly 2.2 times smaller than the previous one:

input: an array a of length n with array elements numbered 0 to n − 1

inc ← round(n/2)
while inc > 0 do:

 for i = inc .. n − 1 do:
 temp ← a[i]
 j ← i
 while j ≥ inc and a[j − inc] > temp do:
 a[j] ← a[j − inc]
 j ← j − inc
 a[j] ← temp
 inc ← round(inc / 2.2)

Analysis
Although Shell sort is easy to code, analyzing its performance is very difficult and depends on the choice of
increment sequence. The algorithm was one of the first to break the quadratic time barrier, but this fact was not
proven until some time after its discovery.[4]

The initial increment sequence suggested by Donald Shell was [1,2,4,8,16,...,2k], but this is a very poor choice in
practice because it means that elements in odd positions are not compared with elements in even positions until the
very last step. The original implementation performs O(n2) comparisons and exchanges in the worst case.[3] A
simple change, replacing 2k with 2k-1, improves the worst-case running time to O(N3/2),[4] a bound that cannot be
improved.[5]

A minor change given in V. Pratt's book[5] improved the bound to O(n log2 n). This is worse than the optimal
comparison sorts, which are O(n log n), but lends itself to sorting networks and has the same asymptotic gate
complexity as Batcher's bitonic sorter.
Consider a small value that is initially stored in the wrong end of the array. Using an O(n2) sort such as bubble sort
or insertion sort, it will take roughly n comparisons and exchanges to move this value all the way to the other end of
the array. Shell sort first moves values using giant step sizes, so a small value will move a long way towards its final
position, with just a few comparisons and exchanges.
One can visualize Shell sort in the following way: arrange the list into a table and sort the columns (using an
insertion sort). Repeat this process, each time with smaller number of longer columns. At the end, the table has only
one column. While transforming the list into a table makes it easier to visualize, the algorithm itself does its sorting
in-place (by incrementing the index by the step size, i.e. using i += step_size instead of i++).
For example, consider a list of numbers like [13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10]. If we started with
a step-size of 5, we could visualize this as breaking the list of numbers into a table with 5 columns. This would look
like this:

13 14 94 33 82

25 59 94 65 23

45 27 73 25 39

http://en.wikipedia.org/w/index.php?title=Pseudocode
http://en.wikipedia.org/w/index.php?title=Geometric
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Comparison_sort
http://en.wikipedia.org/w/index.php?title=Sorting_network
http://en.wikipedia.org/w/index.php?title=Bitonic_sorter
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Bubble_sort
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Insertion_sort

Shell sort 3

10

We then sort each column, which gives us

10 14 73 25 23

13 27 94 33 39

25 59 94 65 82

45

When read back as a single list of numbers, we get [10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45]. Here, the 10
which was all the way at the end, has moved all the way to the beginning. This list is then again sorted using a 3-gap
sort as shown below.

10 14 73

25 23 13

27 94 33

39 25 59

94 65 82

45

Which gives us

10 14 13

25 23 33

27 25 59

39 65 73

45 94 82

94

Now all that remains to be done is a 1-gap sort (simple insertion sort).

Gap sequence

The Shell sort algorithm in action

The gap sequence is an integral part of
the Shell sort algorithm.

The gap sequence that was originally
suggested by Donald Shell was to
begin with and to halve the
number until it reaches 1. While this
sequence provides significant
performance enhancements over the
quadratic algorithms such as insertion
sort, it can be changed slightly to further decrease the average and worst-case running times. Weiss' textbook[6]

demonstrates that this sequence allows a worst case sort, if the data is initially in the array as (small_1,
large_1, small_2, large_2, ...) - that is, the upper half of the numbers are placed, in sorted order, in the even index
locations and the lower end of the numbers are placed similarly in the odd indexed locations.
Perhaps the most crucial property of Shell sort is that the elements remain k-sorted even as the gap diminishes.[5]

Depending on the choice of gap sequence, Shell sort has a proven worst-case running time of (using Shell's
increments that start with 1/2 the array size and divide by 2 each time), (using Hibbard's increments of

), (using Sedgewick's increments of , or), or

http://en.wikipedia.org/w/index.php?title=File:Shellsort.svg
http://en.wikipedia.org/w/index.php?title=Donald_Shell
http://en.wikipedia.org/w/index.php?title=Quadratic_growth
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Insertion_sort

Shell sort 4

(using Pratt's increments), and possibly unproven better running times. The existence of an worst-case
implementation of Shell sort was precluded by Poonen, Plaxton, and Suel.[7]

The best known sequence according to research by Marcin Ciura is 1, 4, 10, 23, 57, 132, 301, 701, 1750.[8] This
study also concluded that "comparisons rather than moves should be considered the dominant operation in
Shellsort."[9] A Shell sort using this sequence runs faster than an insertion sort, but even if it is faster than a quicksort
for small arrays, it is slower for sufficiently big arrays. In his paper Ciura writes "the greatest increments play a
minor role in the overall performance of a sequence," making it reasonable to extend Ciura's sequence beyond 701 as
a geometric progression with a ratio roughly that of Ciura's last two elements, 1750/701. Taking the successor of
each increment g to be floor(g*5/2)+1 for example would then extend Ciura's sequence as 701, 1753, 4383, 10958,
27396, 68491, 171228, 428071, 1070178, …, all pairs of which can be seen by inspection to be well decorrelated,
most being relatively prime and none with common divisor greater than 12.
Another sequence which performs empirically well on large arrays is the Fibonacci numbers (leaving out one of the
starting 1's) to the power of twice the golden ratio, which gives the following sequence: 1, 9, 34, 182, 836, 4025,
19001, 90358, 428481, 2034035, 9651787, 45806244, 217378076, 1031612713, ….[10]

Notes
[1] Shell, D.L. (1959). "A high-speed sorting procedure". Communications of the ACM 2 (7): 30–32. doi:10.1145/368370.368387.
[2] "Shell sort" (http:/ / www. nist. gov/ dads/ HTML/ shellsort. html). National Institute of Standards and Technology. . Retrieved 2007-07-17.
[3] Sedgewick, Robert (1998). Algorithms in C. Addison Wesley. pp. 273–279.
[4] Weiss, Mark Allen (1997). Data Structures and Algorithm Analysis in C. Addison Wesley Longman. pp. 222–226.
[5] Pratt, V (1979). Shellsort and sorting networks (Outstanding dissertations in the computer sciences). Garland. ISBN 0-824-04406-1. (This

was originally presented as the author's Ph.D. thesis, Stanford University, 1971)
[6] Weiss, Mark Allen (2002). Data Structures & Problem Solving using Java. Addison Wesley. ISBN 0-201-74835-5.
[7] Poonen, Plaxton, Suel (1992). "Improved Lower Bounds for Shellsort". Annual Symposium on Foundations of Computer Science (33):

226–235.
[8] A102549 (http:/ / en. wikipedia. org/ wiki/ Oeis:a102549) Best known gap sequence
[9] Marcin Ciura, Best Increments for the Average Case of Shellsort, 13th International Symposium on Fundamentals of Computation Theory,

Riga, Latvia, 22–24 August 2001; Lecture Notes in Computer Science 2001; Vol. 2138, pp. 106-117. (http:/ / sun. aei. polsl. pl/ ~mciura/
publikacje/ shellsort. pdf)

[10] A154393 (http:/ / en. wikipedia. org/ wiki/ Oeis:a154393) The fibonacci to the power of two times the golden ratio gap sequence

External links
• Detailed analysis of Shell sort (http:/ / www. iti. fh-flensburg. de/ lang/ algorithmen/ sortieren/ shell/ shellen. htm)
• Analysis of Shellsort and Related Algorithms, Robert Sedgewick (http:/ / www. cs. princeton. edu/ ~rs/ shell/)
• Animated Sorting Algorithms: Shell Sort (http:/ / www. sorting-algorithms. com/ shell-sort) – graphical

demonstration and discussion of Shell sort

http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Quicksort
http://en.wikipedia.org/w/index.php?title=Fibonacci_numbers
http://en.wikipedia.org/w/index.php?title=Golden_ratio
http://en.wikipedia.org/w/index.php?title=Communications_of_the_ACM
http://www.nist.gov/dads/HTML/shellsort.html
http://en.wikipedia.org/w/index.php?title=National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/w/index.php?title=Robert_Sedgewick
http://en.wikipedia.org/wiki/Oeis%3Aa102549
http://sun.aei.polsl.pl/~mciura/publikacje/shellsort.pdf
http://sun.aei.polsl.pl/~mciura/publikacje/shellsort.pdf
http://en.wikipedia.org/wiki/Oeis%3Aa154393
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/shell/shellen.htm
http://www.cs.princeton.edu/~rs/shell/
http://www.sorting-algorithms.com/shell-sort

Article Sources and Contributors 5

Article Sources and Contributors
Shell sort Source: http://en.wikipedia.org/w/index.php?oldid=389752770 Contributors: A5b, Aaron Rotenberg, Abednigo, Abhinav316, AlexPlank, Alexius08, Anizzomc, Aragorn2, Bkell,
Booyabazooka, BrokenSegue, BrotherE, Bruce1ee, Bubba73, CJLL Wright, Caesura, Camw, Carribeiro, Casbah, CesarB, Chopstickles, Circular17, Clemmy, CodeHive, Crashmatrix, DFRussia,
Damian Yerrick, Dangling Reference, Daniel Quinlan, David Eppstein, Dcoetzee, Dindon, Dinoen, Dmercer, Dmitry Dzhus, Donhalcon, Doradus, Dysprosia, EmilJ, Enochlau, Evileye73,
Fawcett5, Fresheneesz, Gaspercat, Gfis, Giftlite, Graue, GregorB, Gtong32, HJ Mitchell, Hell11421, Hephaestos, Histrion, IanOsgood, Iridescent, JamesBWatson, Jaredwf, Jdforrester, Jirka6,
Jokes Free4Me, Josh Kehn, Jwlee, K2234, Kbk, Knutux, Kx1186, LOL, LiDaobing, MCiura, MacsBug, Mark T, Mav, Maximus Rex, Melchoir, Mike Schwartz, MisterSheik, Mr Elmo,
Mwtoews, Neverwinterx, Nichehole, Noaa, Oberiko, Oli Filth, OoS, Oskar Sigvardsson, Paintman, Paranoid, Persian Poet Gal, Pne, Puckly, Rafomo, RedWolf, Reyk, Rhanekom, Rhebus, Sf222,
Shreeniwasiyer, Sigmalmtd, Silly rabbit, Sjtu.bzhu, Smack, Swift, Thegeneralguy, Themania, Timwi, Turketwh, Udo.bellack, Uni4dfx, Usama707, Vaughan Pratt, XJamRastafire,
Yugsdrawkcabeht, Zodon, Zr2d2, 209 anonymous edits

Image Sources, Licenses and Contributors
File:Shellsort-edited.png Source: http://en.wikipedia.org/w/index.php?title=File:Shellsort-edited.png License: Public Domain Contributors: User:Crashmatrix
Image:Shellsort.svg Source: http://en.wikipedia.org/w/index.php?title=File:Shellsort.svg License: Public Domain Contributors: Booyabazooka, Nagy, 2 anonymous edits

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

	Shell sort
	History
	Description
	Shell sort algorithm in pseudocode
	Analysis
	Gap sequence
	Notes
	External links

	License

