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Quicksort

Visualization of the quicksort algorithm. The horizontal lines are pivot values.
Class Sorting algorithm

Worst case performance O(n2)

Best case performance O(n log n)

Average case performance O(n log n)

Worst case space complexity O(n)

Quicksort is a sorting algorithm developed by C. A. R. Hoare that, on average, makes (big O notation)
comparisons to sort n items. In the worst case, it makes comparisons, though if implemented correctly this
behavior is rare. Typically, quicksort is significantly faster in practice than other algorithms, because
its inner loop can be efficiently implemented on most architectures, and in most real-world data it is possible to make
design choices that minimize the probability of requiring quadratic time. Additionally, quicksort tends to make
excellent usage of the memory hierarchy, taking perfect advantage of virtual memory and available caches. Although
quicksort is usually not implemented as an in-place sort, it is possible to create such an implementation.[1]
Quicksort (also known as "partition-exchange sort") is a comparison sort and, in efficient implementations, is not a
stable sort.
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History
The quicksort algorithm was developed in 1960 by C. A. R. Hoare while in the Soviet Union, as a visiting student at
Moscow State University. At that time, Hoare worked in a project on machine translation for the National Physical
Laboratory. He developed the algorithm in order to sort the words to be translated, to make them more easily
matched to an already-sorted Russian-to-English dictionary that was stored on magnetic tape.[2]

Algorithm

Full example of quicksort on a random set of
numbers. The shaded element is the pivot. It is

always chosen as the last element of the partition.
However, always choosing the last element in the
partition as the pivot in this way results in poor

performance ( ) on already sorted lists,

or lists of identical elements. Since sub-lists of
sorted / identical elements crop up a lot towards

the end of a sorting procedure on a large set,
versions of the quicksort algorithm which choose
the pivot as the middle element run much more

quickly than the algorithm described in this
diagram on large sets of numbers.

Quicksort sorts by employing a divide and conquer strategy to divide
a list into two sub-lists.

The steps are:
1. Pick an element, called a pivot, from the list.
2. Reorder the list so that all elements with values less than the pivot

come before the pivot, while all elements with values greater than
the pivot come after it (equal values can go either way). After this
partitioning, the pivot is in its final position. This is called the
partition operation.

3. Recursively sort the sub-list of lesser elements and the sub-list of
greater elements.

The base case of the recursion are lists of size zero or one, which
never need to be sorted.

Simple version

In simple pseudocode, the algorithm might be expressed as this:

 function quicksort(array)

     var list less, greater

     if length(array) ≤ 1
         return array
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     select and remove a pivot value pivot from array

     for each x in array

         if x ≤ pivot then append x to less
         else append x to greater

     return concatenate(quicksort(less), pivot, quicksort(greater))

Notice that we only examine elements by comparing them to other elements. This makes quicksort a comparison
sort. This version is also a stable sort (assuming that the "for each" method retrieves elements in original order, and
the pivot selected is the last among those of equal value).
The correctness of the partition algorithm is based on the following two arguments:
• At each iteration, all the elements processed so far are in the desired position: before the pivot if less than the

pivot's value, after the pivot if greater than the pivot's value (loop invariant).
• Each iteration leaves one fewer element to be processed (loop variant).
The correctness of the overall algorithm follows from inductive reasoning: for zero or one element, the algorithm
leaves the data unchanged; for a larger data set it produces the concatenation of two parts, elements less than the
pivot and elements greater than it, themselves sorted by the recursive hypothesis.

Complex version
The disadvantage of the simple version above is that it requires O(n) extra storage space, which is as bad as merge
sort. The additional memory allocations required can also drastically impact speed and cache performance in
practical implementations. There is a more complex version which uses an in-place partition algorithm and can
achieve the complete sort using O(log n) space (not counting the input) use on average (for the call stack):

  function partition(array, left, right, pivotIndex)

     pivotValue := array[pivotIndex]

     swap array[pivotIndex] and array[right] // Move pivot to end

     storeIndex := left 

     for i  from  left to right - 1 // left ≤ i < right 
         if array[i] ≤ pivotValue
             swap array[i] and array[storeIndex]

             storeIndex := storeIndex + 1

     swap array[storeIndex] and array[right] // Move pivot to its final place

     return storeIndex
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In-place partition in action on a small list. The boxed
element is the pivot element, blue elements are less or

equal, and red elements are larger.

This is the in-place partition algorithm. It partitions the portion of
the array between indexes left and right, inclusively, by moving all
elements less than or equal to array[pivotIndex] to the beginning
of the subarray, leaving all the greater elements following them. In
the process it also finds the final position for the pivot element,
which it returns. It temporarily moves the pivot element to the end
of the subarray, so that it doesn't get in the way. Because it only
uses exchanges, the final list has the same elements as the original
list. Notice that an element may be exchanged multiple times
before reaching its final place. Also, in case of pivot duplicates in
the input array, they can be spread across left subarray, possibly in
random order. This doesn't represent a partitioning failure, as
further sorting will reposition and finally "glue" them together.

This form of the partition algorithm is not the original form;
multiple variations can be found in various textbooks, such as
versions not having the storeIndex. However, this form is probably
the easiest to understand.
Once we have this, writing quicksort itself is easy:

 procedure quicksort(array, left, right)

     if right > left

         select a pivot index //(e.g. pivotIndex := left + (right - left)/2)

         pivotNewIndex := partition(array, left, right, pivotIndex)

         quicksort(array, left, pivotNewIndex - 1)

         quicksort(array, pivotNewIndex + 1, right)

However, since partition reorders elements within a partition, this version of quicksort is not a stable sort.
Note the left + (right-left)/2 expression. (left + right)/2 would seem to be adequate, but in the presence of overflow,
can give the wrong answer; for example, in signed 16-bit arithmetic, 32000 + 32000 is not 64000 but -1536, and
dividing that number by two will give you a new pivotIndex of -768 — obviously wrong. The same problem arises
in unsigned arithmetic: 64000 + 64000 truncated to an unsigned 16-bit value is 62464, and dividing that by two gives
you 31232 — probably within the array bounds, but still wrong. By contrast, (right - left) and (right - left)/2
obviously do not overflow, and left + (right - left)/2 also does not overflow ((right - left)/2 = (right + left)/2 - left
which is clearly less than or equal to intmax - left).
Another implementation that works in place:

 function quicksort(array, left, right)

     var pivot, leftIdx = left, rightIdx = right

     if right - left > 0

         pivot = (left + right) / 2

         while leftIdx <= pivot and rightIdx >= pivot

             while array[leftIdx] < array[pivot] and leftIdx <= pivot

                 leftIdx = leftIdx + 1

             while array[rightIdx] > array[pivot] and rightIdx >= pivot

                 rightIdx = rightIdx - 1;

             swap array[leftIdx] with array[rightIdx]

             leftIdx = leftIdx + 1
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             rightIdx = rightIdx - 1

             if leftIdx - 1 == pivot

                 pivot = rightIdx = rightIdx + 1

             else if rightIdx + 1 == pivot

                 pivot = leftIdx = leftIdx - 1

         quicksort(array, left, pivot - 1)

         quicksort(array, pivot + 1, right)

Implementation issues

Choice of pivot

In very early versions of quicksort, the leftmost element of the partition would often be chosen as the pivot element.
Unfortunately, this causes worst-case behavior on already sorted arrays, which is a rather common use-case. The
problem was easily solved by choosing either a random index for the pivot, choosing the middle index of the
partition or (especially for longer partitions) choosing the median of the first, middle and last element of the partition
for the pivot (as recommended by R. Sedgewick).[3] [4]

Optimizations

Two other important optimizations, also suggested by R. Sedgewick, as commonly acknowledged, and widely used
in practice[5] [6] [7] are:
• To make sure at most O(log N) space is used, recurse first into the smaller half of the array, and use a tail call to

recurse into the other.
• Use insertion sort, which has a smaller constant factor and is thus faster on small arrays, for invocations on such

small arrays (i.e. where the length is less than a threshold t determined experimentally). This can be implemented
by leaving such arrays unsorted and running a single insertion sort pass at the end, because insertion sort handles
nearly sorted arrays efficiently. A separate insertion sort of each small segment as they are identified adds the
overhead of starting and stopping many small sorts, but, avoids wasting effort comparing keys across the many
segment boundaries, which keys will be in order due to the workings of the quicksort process.

Parallelization

Like merge sort, quicksort can also be easily parallelized due to its divide-and-conquer nature. Individual in-place
partition operations are difficult to parallelize, but once divided, different sections of the list can be sorted in parallel.
If we have processors, we can divide a list of elements into sublists in average time, then sort each

of these in average time. Ignoring the preprocessing and the time required to merge the

sorted sublists, this is linear speedup. Given processors, only time is required overall.
One advantage of parallel quicksort over other parallel sort algorithms is that no synchronization is required. A new
thread is started as soon as a sublist is available for it to work on and it does not communicate with other threads.
When all threads complete, the sort is done.
Other more sophisticated parallel sorting algorithms can achieve even better time bounds.[8] For example, in 1991
David Powers described a parallelized quicksort (and a related radix sort) that can operate in time given
enough processors by performing partitioning implicitly.[9]
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Formal analysis
From the initial description it's not obvious that quicksort takes time on average. It's not hard to see
that the partition operation, which simply loops over the elements of the array once, uses time. In versions
that perform concatenation, this operation is also .
In the best case, each time we perform a partition we divide the list into two nearly equal pieces. This means each
recursive call processes a list of half the size. Consequently, we can make only nested calls before we reach a
list of size 1. This means that the depth of the call tree is . But no two calls at the same level of the call
tree process the same part of the original list; thus, each level of calls needs only time all together (each call
has some constant overhead, but since there are only calls at each level, this is subsumed in the 
factor). The result is that the algorithm uses only time.
An alternate approach is to set up a recurrence relation for the factor, the time needed to sort a list of size .
Because a single quicksort call involves factor work plus two recursive calls on lists of size in the best
case, the relation would be:

The master theorem tells us that .
In fact, it's not necessary to divide the list this precisely; even if each pivot splits the elements with 99% on one side
and 1% on the other (or any other fixed fraction), the call depth is still limited to , so the total running
time is still .
In the worst case, however, the two sublists have size 1 and (for example, if the array consists of the same
element by value), and the call tree becomes a linear chain of nested calls. The th call does work,

and . The recurrence relation is:

This is the same relation as for insertion sort and selection sort, and it solves to . Given knowledge
of which comparisons are performed by the sort, there are adaptive algorithms that are effective at generating
worst-case input for quicksort on-the-fly, regardless of the pivot selection strategy.[10]

Randomized quicksort expected complexity

Randomized quicksort has the desirable property that, for any input, it requires only  expected time
(averaged over all choices of pivots). But what makes random pivots a good choice?
Suppose we sort the list and then divide it into four parts. The two parts in the middle will contain the best pivots;
each of them is larger than at least 25% of the elements and smaller than at least 25% of the elements. If we could
consistently choose an element from these two middle parts, we would only have to split the list at most 
times before reaching lists of size 1, yielding an algorithm.
A random choice will only choose from these middle parts half the time. However, this is good enough. Imagine that
you are flipping a coin over and over until you get heads. Although this could take a long time, on average only

flips are required, and the chance that you won't get heads after flips is highly improbable. By the
same argument, quicksort's recursion will terminate on average at a call depth of only . But if its
average call depth is , and each level of the call tree processes at most elements, the total amount of
work done on average is the product, . Note that the algorithm does not have to verify that the pivot is
in the middle half - if we hit it any constant fraction of the times, that is enough for the desired complexity.
The outline of a formal proof of the expected time complexity follows. Assume that there are no 
duplicates as duplicates could be handled with linear time pre- and post-processing, or considered cases easier than
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the analyzed. Choosing a pivot, uniformly at random from to , is then equivalent to choosing the size of one
particular partition, uniformly at random from to . With this observation, the continuation of the proof is analogous
to the one given in the average complexity section.

Average complexity

Even if pivots aren't chosen randomly, quicksort still requires only time over all possible permutations
of its input. Because this average is simply the sum of the times over all permutations of the input divided by 
factorial, it's equivalent to choosing a random permutation of the input. When we do this, the pivot choices are
essentially random, leading to an algorithm with the same running time as randomized quicksort.
More precisely, the average number of comparisons over all permutations of the input sequence can be estimated
accurately by solving the recurrence relation:

Here, is the number of comparisons the partition uses. Since the pivot is equally likely to fall anywhere in
the sorted list order, the sum is averaging over all possible splits.
This means that, on average, quicksort performs only about 39% worse than the ideal number of comparisons, which
is its best case. In this sense it is closer to the best case than the worst case. This fast average runtime is another
reason for quicksort's practical dominance over other sorting algorithms.

Space complexity
The space used by quicksort depends on the version used.

Quicksort has a space complexity of , even in the worst case, when it is carefully implemented ensuring
the following two properties:
• in-place partitioning is used. This requires .
• After partitioning, the partition with the fewest elements is (recursively) sorted first, requiring at most 

space. Then the other partition is sorted using tail recursion or iteration. This idea, as discussed above, was
described by R. Sedgewick).[3] [4]

The version of quicksort with in-place partitioning uses only constant additional space before making any recursive
call. However, if it has made nested recursive calls, it needs to store a constant amount of information
from each of them. Since the best case makes at most nested recursive calls, it uses space.
The worst case makes nested recursive calls, and so needs space; Sedgewick's improved version using
tail recursion requires space in the worst case.
We are eliding a small detail here, however. If we consider sorting arbitrarily large lists, we have to keep in mind
that our variables like left and right can no longer be considered to occupy constant space; it takes bits to
index into a list of items. Because we have variables like this in every stack frame, in reality quicksort requires

bits of space in the best and average case and space in the worst case. This isn't too
terrible, though, since if the list contains mostly distinct elements, the list itself will also occupy bits of
space.
The not-in-place version of quicksort uses space before it even makes any recursive calls. In the best case its
space is still limited to , because each level of the recursion uses half as much space as the last, and

Its worst case is dismal, requiring
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space, far more than the list itself. If the list elements are not themselves constant size, the problem grows even
larger; for example, if most of the list elements are distinct, each would require about bits, leading to a
best-case and worst-case space requirement.

Selection-based pivoting
A selection algorithm chooses the kth smallest of a list of numbers; this is an easier problem in general than sorting.
One simple but effective selection algorithm works nearly in the same manner as quicksort, except that instead of
making recursive calls on both sublists, it only makes a single tail-recursive call on the sublist which contains the
desired element. This small change lowers the average complexity to linear or time, and makes it an in-place
algorithm. A variation on this algorithm brings the worst-case time down to (see selection algorithm for more
information).
Conversely, once we know a worst-case selection algorithm is available, we can use it to find the ideal pivot
(the median) at every step of quicksort, producing a variant with worst-case running time. In practical
implementations, however, this variant is considerably slower on average.
Another variant is to choose the Median of Medians as the pivot element instead of the median itself for partitioning
the elements. While maintaining the asymptotically optimal run time complexity of (by preventing
worst case partitions), it is also considerably faster than the variant that chooses the median as pivot.

Variants
There are three well known variants of quicksort:
• Balanced quicksort: choose a pivot likely to represent the middle of the values to be sorted, and then follow the

regular quicksort algorithm.
• External quicksort: The same as regular quicksort except the pivot is replaced by a buffer. First, read the M/2

first and last elements into the buffer and sort them. Read the next element from the beginning or end to balance
writing. If the next element is less than the least of the buffer, write it to available space at the beginning. If
greater than the greatest, write it to the end. Otherwise write the greatest or least of the buffer, and put the next
element in the buffer. Keep the maximum lower and minimum upper keys written to avoid resorting middle
elements that are in order. When done, write the buffer. Recursively sort the smaller partition, and loop to sort the
remaining partition.

• Three-way radix quicksort (also called multikey quicksort): is a combination of radix sort and quicksort. Pick
an element from the array (the pivot) and consider the first character (key) of the string (multikey). Partition the
remaining elements into three sets: those whose corresponding character is less than, equal to, and greater than the
pivot's character. Recursively sort the "less than" and "greater than" partitions on the same character. Recursively
sort the "equal to" partition by the next character (key).
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Comparison with other sorting algorithms
Quicksort is a space-optimized version of the binary tree sort. Instead of inserting items sequentially into an explicit
tree, quicksort organizes them concurrently into a tree that is implied by the recursive calls. The algorithms make
exactly the same comparisons, but in a different order.

The most direct competitor of quicksort is heapsort. Heapsort's worst-case running time is always .
But, heapsort is assumed to be on average somewhat slower than quicksort. This is still debated and in research, with
some publications indicating the opposite.[11] [12] In Quicksort remains the chance of worst case performance except
in the introsort variant, which switches to heapsort when a bad case is detected. If it is known in advance that
heapsort is going to be necessary, using it directly will be faster than waiting for introsort to switch to it.
Quicksort also competes with mergesort, another recursive sort algorithm but with the benefit of worst-case

running time. Mergesort is a stable sort, unlike quicksort and heapsort, and can be easily adapted to
operate on linked lists and very large lists stored on slow-to-access media such as disk storage or network attached
storage. Although quicksort can be written to operate on linked lists, it will often suffer from poor pivot choices
without random access. The main disadvantage of mergesort is that, when operating on arrays, it requires 
auxiliary space in the best case, whereas the variant of quicksort with in-place partitioning and tail recursion uses
only space. (Note that when operating on linked lists, mergesort only requires a small, constant amount
of auxiliary storage.)
Bucket sort with two buckets is very similar to quicksort; the pivot in this case is effectively the value in the middle
of the value range, which does well on average for uniformly distributed inputs.

See also
• qsort
• Introsort
• Flashsort
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