// ************************************************************************** // // // // eses eses // // eses eses // // eses eseses esesese eses Embedded Systems Group // // ese ese ese ese ese // // ese eseseses eseseses ese Department of Computer Science // // eses eses ese eses // // eses eseses eseseses eses University of Kaiserslautern // // eses eses // // // // ************************************************************************** // nat x0,x1,x2,x3,x4,x5,x6,x7,x8; nat y0,y1,y2,y3,y4,y5,y6,y7,y8; nat p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17; thread RadixBMulDadda { nat t0,t1,t10,t100,t101,t102,t103,t104,t105,t106,t107,t108,t109,t11,t110,t111,t112,t113,t114,t115,t116,t117,t118,t119,t12,t120,t121,t122,t123,t124,t125,t126,t127,t128,t129,t13,t130,t131,t132,t133,t134,t135,t136,t137,t138,t139,t14,t140,t141,t142,t143,t144,t145,t146,t147,t148,t149,t15,t150,t151,t152,t153,t154,t155,t156,t157,t158,t159,t16,t160,t161,t162,t163,t164,t165,t166,t167,t168,t169,t17,t170,t171,t172,t173,t174,t175,t176,t177,t178,t179,t18,t180,t181,t182,t183,t184,t185,t186,t187,t188,t189,t19,t190,t191,t192,t193,t194,t195,t196,t197,t198,t199,t2,t20,t200,t201,t202,t203,t204,t205,t206,t207,t208,t209,t21,t210,t211,t212,t213,t214,t215,t216,t217,t218,t219,t22,t220,t221,t222,t223,t224,t225,t226,t227,t228,t229,t23,t230,t231,t232,t233,t234,t235,t236,t237,t238,t239,t24,t240,t241,t242,t243,t244,t245,t246,t247,t248,t249,t25,t250,t251,t252,t253,t254,t255,t256,t257,t258,t259,t26,t260,t261,t262,t263,t264,t265,t266,t267,t268,t269,t27,t270,t271,t272,t273,t274,t275,t276,t277,t278,t279,t28,t280,t281,t282,t283,t284,t285,t286,t287,t288,t289,t29,t290,t291,t292,t293,t294,t295,t296,t297,t298,t299,t3,t30,t300,t301,t302,t303,t304,t305,t306,t307,t308,t309,t31,t310,t311,t312,t313,t314,t315,t316,t317,t318,t319,t32,t320,t321,t322,t323,t324,t325,t326,t327,t328,t329,t33,t330,t331,t332,t333,t334,t335,t336,t337,t338,t339,t34,t340,t341,t342,t343,t344,t345,t346,t347,t348,t349,t35,t350,t351,t352,t353,t354,t355,t356,t357,t358,t359,t36,t360,t361,t362,t363,t364,t365,t366,t367,t368,t369,t37,t370,t371,t372,t373,t374,t375,t376,t377,t378,t379,t38,t380,t381,t382,t383,t384,t385,t386,t387,t388,t389,t39,t390,t391,t392,t393,t394,t395,t396,t397,t398,t399,t4,t40,t400,t401,t402,t403,t404,t405,t406,t407,t408,t409,t41,t410,t411,t412,t413,t414,t415,t416,t417,t418,t419,t42,t420,t421,t422,t423,t424,t425,t426,t427,t428,t429,t43,t430,t431,t432,t433,t434,t435,t436,t437,t438,t439,t44,t440,t441,t442,t443,t444,t445,t446,t447,t448,t449,t45,t450,t451,t452,t453,t454,t455,t456,t457,t458,t459,t46,t460,t461,t462,t463,t464,t465,t466,t467,t468,t469,t47,t470,t471,t472,t473,t474,t475,t476,t477,t478,t479,t48,t480,t481,t482,t483,t484,t485,t486,t487,t488,t489,t49,t490,t491,t492,t493,t494,t495,t496,t497,t498,t499,t5,t50,t500,t501,t502,t503,t504,t505,t506,t507,t508,t509,t51,t510,t511,t512,t513,t514,t515,t516,t517,t518,t519,t52,t520,t521,t522,t523,t524,t525,t526,t527,t528,t529,t53,t530,t531,t532,t533,t534,t535,t536,t537,t538,t539,t54,t540,t541,t542,t543,t544,t545,t546,t547,t548,t549,t55,t550,t551,t552,t553,t554,t555,t556,t557,t558,t559,t56,t560,t561,t562,t563,t564,t565,t566,t567,t568,t569,t57,t570,t571,t572,t573,t574,t575,t576,t577,t578,t579,t58,t580,t581,t582,t583,t584,t585,t586,t587,t588,t589,t59,t590,t591,t592,t593,t594,t595,t596,t597,t598,t599,t6,t60,t600,t601,t602,t603,t604,t605,t606,t607,t608,t609,t61,t610,t611,t612,t613,t614,t615,t616,t617,t618,t619,t62,t620,t621,t622,t623,t624,t625,t626,t627,t628,t629,t63,t630,t631,t632,t633,t634,t635,t636,t637,t638,t639,t64,t640,t641,t642,t643,t644,t645,t646,t647,t648,t649,t65,t650,t651,t652,t653,t654,t655,t656,t657,t658,t659,t66,t660,t661,t662,t663,t664,t665,t666,t667,t668,t669,t67,t670,t68,t69,t7,t70,t71,t72,t73,t74,t75,t76,t77,t78,t79,t8,t80,t81,t82,t83,t84,t85,t86,t87,t88,t89,t9,t90,t91,t92,t93,t94,t95,t96,t97,t98,t99; bool t671,t672,t673,t674,t675,t676,t677,t678,t679,t680,t681,t682,t683,t684,t685,t686,t687,t688,t689,t690,t691,t692,t693,t694,t695,t696,t697,t698,t699,t700,t701,t702,t703,t704; // compute partial products t0 = x0 * y0; t1 = t0 / 256; t2 = t0 % 256; t3 = x0 * y1; t4 = t3 / 256; t5 = t3 % 256; t6 = x1 * y0; t7 = t6 / 256; t8 = t6 % 256; t9 = x0 * y2; t10 = t9 / 256; t11 = t9 % 256; t12 = x1 * y1; t13 = t12 / 256; t14 = t12 % 256; t15 = x2 * y0; t16 = t15 / 256; t17 = t15 % 256; t18 = x0 * y3; t19 = t18 / 256; t20 = t18 % 256; t21 = x1 * y2; t22 = t21 / 256; t23 = t21 % 256; t24 = x2 * y1; t25 = t24 / 256; t26 = t24 % 256; t27 = x3 * y0; t28 = t27 / 256; t29 = t27 % 256; t30 = x0 * y4; t31 = t30 / 256; t32 = t30 % 256; t33 = x1 * y3; t34 = t33 / 256; t35 = t33 % 256; t36 = x2 * y2; t37 = t36 / 256; t38 = t36 % 256; t39 = x3 * y1; t40 = t39 / 256; t41 = t39 % 256; t42 = x4 * y0; t43 = t42 / 256; t44 = t42 % 256; t45 = x0 * y5; t46 = t45 / 256; t47 = t45 % 256; t48 = x1 * y4; t49 = t48 / 256; t50 = t48 % 256; t51 = x2 * y3; t52 = t51 / 256; t53 = t51 % 256; t54 = x3 * y2; t55 = t54 / 256; t56 = t54 % 256; t57 = x4 * y1; t58 = t57 / 256; t59 = t57 % 256; t60 = x5 * y0; t61 = t60 / 256; t62 = t60 % 256; t63 = x0 * y6; t64 = t63 / 256; t65 = t63 % 256; t66 = x1 * y5; t67 = t66 / 256; t68 = t66 % 256; t69 = x2 * y4; t70 = t69 / 256; t71 = t69 % 256; t72 = x3 * y3; t73 = t72 / 256; t74 = t72 % 256; t75 = x4 * y2; t76 = t75 / 256; t77 = t75 % 256; t78 = x5 * y1; t79 = t78 / 256; t80 = t78 % 256; t81 = x6 * y0; t82 = t81 / 256; t83 = t81 % 256; t84 = x0 * y7; t85 = t84 / 256; t86 = t84 % 256; t87 = x1 * y6; t88 = t87 / 256; t89 = t87 % 256; t90 = x2 * y5; t91 = t90 / 256; t92 = t90 % 256; t93 = x3 * y4; t94 = t93 / 256; t95 = t93 % 256; t96 = x4 * y3; t97 = t96 / 256; t98 = t96 % 256; t99 = x5 * y2; t100 = t99 / 256; t101 = t99 % 256; t102 = x6 * y1; t103 = t102 / 256; t104 = t102 % 256; t105 = x7 * y0; t106 = t105 / 256; t107 = t105 % 256; t108 = x0 * y8; t109 = t108 / 256; t110 = t108 % 256; t111 = x1 * y7; t112 = t111 / 256; t113 = t111 % 256; t114 = x2 * y6; t115 = t114 / 256; t116 = t114 % 256; t117 = x3 * y5; t118 = t117 / 256; t119 = t117 % 256; t120 = x4 * y4; t121 = t120 / 256; t122 = t120 % 256; t123 = x5 * y3; t124 = t123 / 256; t125 = t123 % 256; t126 = x6 * y2; t127 = t126 / 256; t128 = t126 % 256; t129 = x7 * y1; t130 = t129 / 256; t131 = t129 % 256; t132 = x8 * y0; t133 = t132 / 256; t134 = t132 % 256; t135 = x1 * y8; t136 = t135 / 256; t137 = t135 % 256; t138 = x2 * y7; t139 = t138 / 256; t140 = t138 % 256; t141 = x3 * y6; t142 = t141 / 256; t143 = t141 % 256; t144 = x4 * y5; t145 = t144 / 256; t146 = t144 % 256; t147 = x5 * y4; t148 = t147 / 256; t149 = t147 % 256; t150 = x6 * y3; t151 = t150 / 256; t152 = t150 % 256; t153 = x7 * y2; t154 = t153 / 256; t155 = t153 % 256; t156 = x8 * y1; t157 = t156 / 256; t158 = t156 % 256; t159 = x2 * y8; t160 = t159 / 256; t161 = t159 % 256; t162 = x3 * y7; t163 = t162 / 256; t164 = t162 % 256; t165 = x4 * y6; t166 = t165 / 256; t167 = t165 % 256; t168 = x5 * y5; t169 = t168 / 256; t170 = t168 % 256; t171 = x6 * y4; t172 = t171 / 256; t173 = t171 % 256; t174 = x7 * y3; t175 = t174 / 256; t176 = t174 % 256; t177 = x8 * y2; t178 = t177 / 256; t179 = t177 % 256; t180 = x3 * y8; t181 = t180 / 256; t182 = t180 % 256; t183 = x4 * y7; t184 = t183 / 256; t185 = t183 % 256; t186 = x5 * y6; t187 = t186 / 256; t188 = t186 % 256; t189 = x6 * y5; t190 = t189 / 256; t191 = t189 % 256; t192 = x7 * y4; t193 = t192 / 256; t194 = t192 % 256; t195 = x8 * y3; t196 = t195 / 256; t197 = t195 % 256; t198 = x4 * y8; t199 = t198 / 256; t200 = t198 % 256; t201 = x5 * y7; t202 = t201 / 256; t203 = t201 % 256; t204 = x6 * y6; t205 = t204 / 256; t206 = t204 % 256; t207 = x7 * y5; t208 = t207 / 256; t209 = t207 % 256; t210 = x8 * y4; t211 = t210 / 256; t212 = t210 % 256; t213 = x5 * y8; t214 = t213 / 256; t215 = t213 % 256; t216 = x6 * y7; t217 = t216 / 256; t218 = t216 % 256; t219 = x7 * y6; t220 = t219 / 256; t221 = t219 % 256; t222 = x8 * y5; t223 = t222 / 256; t224 = t222 % 256; t225 = x6 * y8; t226 = t225 / 256; t227 = t225 % 256; t228 = x7 * y7; t229 = t228 / 256; t230 = t228 % 256; t231 = x8 * y6; t232 = t231 / 256; t233 = t231 % 256; t234 = x7 * y8; t235 = t234 / 256; t236 = t234 % 256; t237 = x8 * y7; t238 = t237 / 256; t239 = t237 % 256; t240 = x8 * y8; t241 = t240 / 256; t242 = t240 % 256; // reduce heights of each column to 13 t243 = t107 + t104 + t101; t244 = t243 / 256; t245 = t243 % 256; t246 = t116 + t113; t247 = t246 / 256; t248 = t246 % 256; t249 = t125 + t122 + t119; t250 = t249 / 256; t251 = t249 % 256; t252 = t134 + t131 + t128; t253 = t252 / 256; t254 = t252 % 256; t255 = t130 + t127; t256 = t255 / 256; t257 = t255 % 256; t258 = t140 + t137 + t133; t259 = t258 / 256; t260 = t258 % 256; t261 = t149 + t146 + t143; t262 = t261 / 256; t263 = t261 % 256; t264 = t158 + t155 + t152; t265 = t264 / 256; t266 = t264 % 256; t267 = t161 + t157 + t154; t268 = t267 / 256; t269 = t267 % 256; t270 = t170 + t167 + t164; t271 = t270 / 256; t272 = t270 % 256; t273 = t179 + t176 + t173; t274 = t273 / 256; t275 = t273 % 256; t276 = t188 + t185; t277 = t276 / 256; t278 = t276 % 256; t279 = t197 + t194 + t191; t280 = t279 / 256; t281 = t279 % 256; // reduce heights of each column to 9 t282 = t62 + t59 + t56; t283 = t282 / 256; t284 = t282 % 256; t285 = t65 + t61; t286 = t285 / 256; t287 = t285 % 256; t288 = t74 + t71 + t68; t289 = t288 / 256; t290 = t288 % 256; t291 = t83 + t80 + t77; t292 = t291 / 256; t293 = t291 % 256; t294 = t70 + t67; t295 = t294 / 256; t296 = t294 % 256; t297 = t79 + t76 + t73; t298 = t297 / 256; t299 = t297 % 256; t300 = t89 + t86 + t82; t301 = t300 / 256; t302 = t300 % 256; t303 = t98 + t95 + t92; t304 = t303 / 256; t305 = t303 % 256; t306 = t244 + t248 + t251; t307 = t306 / 256; t308 = t306 % 256; t309 = t91 + t88 + t85; t310 = t309 / 256; t311 = t309 % 256; t312 = t100 + t97 + t94; t313 = t312 / 256; t314 = t312 % 256; t315 = t110 + t106 + t103; t316 = t315 / 256; t317 = t315 % 256; t318 = t257 + t260 + t263; t319 = t318 / 256; t320 = t318 % 256; t321 = t247 + t250 + t253; t322 = t321 / 256; t323 = t321 % 256; t324 = t115 + t112 + t109; t325 = t324 / 256; t326 = t324 % 256; t327 = t124 + t121 + t118; t328 = t327 / 256; t329 = t327 % 256; t330 = t265 + t269 + t272; t331 = t330 / 256; t332 = t330 % 256; t333 = t256 + t259 + t262; t334 = t333 / 256; t335 = t333 % 256; t336 = t142 + t139 + t136; t337 = t336 / 256; t338 = t336 % 256; t339 = t151 + t148 + t145; t340 = t339 / 256; t341 = t339 % 256; t342 = t271 + t274 + t278; t343 = t342 / 256; t344 = t342 % 256; t345 = t163 + t160 + t268; t346 = t345 / 256; t347 = t345 % 256; t348 = t172 + t169 + t166; t349 = t348 / 256; t350 = t348 % 256; t351 = t182 + t178 + t175; t352 = t351 / 256; t353 = t351 % 256; t354 = t184 + t181 + t277; t355 = t354 / 256; t356 = t354 % 256; t357 = t193 + t190 + t187; t358 = t357 / 256; t359 = t357 % 256; t360 = t203 + t200 + t196; t361 = t360 / 256; t362 = t360 % 256; t363 = t212 + t209 + t206; t364 = t363 / 256; t365 = t363 % 256; t366 = t215 + t211 + t208; t367 = t366 / 256; t368 = t366 % 256; t369 = t224 + t221 + t218; t370 = t369 / 256; t371 = t369 % 256; // reduce heights of each column to 6 t372 = t29 + t26; t373 = t372 / 256; t374 = t372 % 256; t375 = t35 + t32 + t28; t376 = t375 / 256; t377 = t375 % 256; t378 = t44 + t41 + t38; t379 = t378 / 256; t380 = t378 % 256; t381 = t34 + t31; t382 = t381 / 256; t383 = t381 % 256; t384 = t43 + t40 + t37; t385 = t384 / 256; t386 = t384 % 256; t387 = t53 + t50 + t47; t388 = t387 / 256; t389 = t387 % 256; t390 = t287 + t290 + t293; t391 = t390 / 256; t392 = t390 % 256; t393 = t49 + t46 + t283; t394 = t393 / 256; t395 = t393 % 256; t396 = t58 + t55 + t52; t397 = t396 / 256; t398 = t396 % 256; t399 = t299 + t302 + t305; t400 = t399 / 256; t401 = t399 % 256; t402 = t289 + t292 + t296; t403 = t402 / 256; t404 = t402 % 256; t405 = t64 + t245 + t286; t406 = t405 / 256; t407 = t405 % 256; t408 = t311 + t314 + t317; t409 = t408 / 256; t410 = t408 % 256; t411 = t301 + t304 + t308; t412 = t411 / 256; t413 = t411 % 256; t414 = t254 + t295 + t298; t415 = t414 / 256; t416 = t414 % 256; t417 = t323 + t326 + t329; t418 = t417 / 256; t419 = t417 % 256; t420 = t313 + t316 + t320; t421 = t420 / 256; t422 = t420 % 256; t423 = t266 + t307 + t310; t424 = t423 / 256; t425 = t423 % 256; t426 = t335 + t338 + t341; t427 = t426 / 256; t428 = t426 % 256; t429 = t325 + t328 + t332; t430 = t429 / 256; t431 = t429 % 256; t432 = t275 + t319 + t322; t433 = t432 / 256; t434 = t432 % 256; t435 = t347 + t350 + t353; t436 = t435 / 256; t437 = t435 % 256; t438 = t337 + t340 + t344; t439 = t438 / 256; t440 = t438 % 256; t441 = t281 + t331 + t334; t442 = t441 / 256; t443 = t441 % 256; t444 = t359 + t362 + t365; t445 = t444 / 256; t446 = t444 % 256; t447 = t349 + t352 + t356; t448 = t447 / 256; t449 = t447 % 256; t450 = t280 + t343 + t346; t451 = t450 / 256; t452 = t450 % 256; t453 = t364 + t368 + t371; t454 = t453 / 256; t455 = t453 % 256; t456 = t355 + t358 + t361; t457 = t456 / 256; t458 = t456 % 256; t459 = t205 + t202 + t199; t460 = t459 / 256; t461 = t459 % 256; t462 = t214 + t367 + t370; t463 = t462 / 256; t464 = t462 % 256; t465 = t223 + t220 + t217; t466 = t465 / 256; t467 = t465 % 256; t468 = t233 + t230 + t227; t469 = t468 / 256; t470 = t468 % 256; t471 = t239 + t236 + t232; t472 = t471 / 256; t473 = t471 % 256; // reduce heights of each column to 4 t474 = t17 + t14; t475 = t474 / 256; t476 = t474 % 256; t477 = t13 + t10; t478 = t477 / 256; t479 = t477 % 256; t480 = t23 + t20 + t16; t481 = t480 / 256; t482 = t480 % 256; t483 = t373 + t377 + t380; t484 = t483 / 256; t485 = t483 % 256; t486 = t25 + t22 + t19; t487 = t486 / 256; t488 = t486 % 256; t489 = t383 + t386 + t389; t490 = t489 / 256; t491 = t489 % 256; t492 = t284 + t376 + t379; t493 = t492 / 256; t494 = t492 % 256; t495 = t392 + t395 + t398; t496 = t495 / 256; t497 = t495 % 256; t498 = t382 + t385 + t388; t499 = t498 / 256; t500 = t498 % 256; t501 = t401 + t404 + t407; t502 = t501 / 256; t503 = t501 % 256; t504 = t391 + t394 + t397; t505 = t504 / 256; t506 = t504 % 256; t507 = t410 + t413 + t416; t508 = t507 / 256; t509 = t507 % 256; t510 = t400 + t403 + t406; t511 = t510 / 256; t512 = t510 % 256; t513 = t419 + t422 + t425; t514 = t513 / 256; t515 = t513 % 256; t516 = t409 + t412 + t415; t517 = t516 / 256; t518 = t516 % 256; t519 = t428 + t431 + t434; t520 = t519 / 256; t521 = t519 % 256; t522 = t418 + t421 + t424; t523 = t522 / 256; t524 = t522 % 256; t525 = t437 + t440 + t443; t526 = t525 / 256; t527 = t525 % 256; t528 = t427 + t430 + t433; t529 = t528 / 256; t530 = t528 % 256; t531 = t446 + t449 + t452; t532 = t531 / 256; t533 = t531 % 256; t534 = t436 + t439 + t442; t535 = t534 / 256; t536 = t534 % 256; t537 = t455 + t458 + t461; t538 = t537 / 256; t539 = t537 % 256; t540 = t445 + t448 + t451; t541 = t540 / 256; t542 = t540 % 256; t543 = t464 + t467 + t470; t544 = t543 / 256; t545 = t543 % 256; t546 = t454 + t457 + t460; t547 = t546 / 256; t548 = t546 % 256; t549 = t466 + t469 + t473; t550 = t549 / 256; t551 = t549 % 256; t552 = t229 + t226 + t463; t553 = t552 / 256; t554 = t552 % 256; t555 = t242 + t238 + t235; t556 = t555 / 256; t557 = t555 % 256; // reduce heights of each column to 3 t558 = t11 + t7; t559 = t558 / 256; t560 = t558 % 256; t561 = t374 + t475 + t479; t562 = t561 / 256; t563 = t561 % 256; t564 = t478 + t481 + t485; t565 = t564 / 256; t566 = t564 % 256; t567 = t484 + t487 + t491; t568 = t567 / 256; t569 = t567 % 256; t570 = t490 + t493 + t497; t571 = t570 / 256; t572 = t570 % 256; t573 = t496 + t499 + t503; t574 = t573 / 256; t575 = t573 % 256; t576 = t502 + t505 + t509; t577 = t576 / 256; t578 = t576 % 256; t579 = t508 + t511 + t515; t580 = t579 / 256; t581 = t579 % 256; t582 = t514 + t517 + t521; t583 = t582 / 256; t584 = t582 % 256; t585 = t520 + t523 + t527; t586 = t585 / 256; t587 = t585 % 256; t588 = t526 + t529 + t533; t589 = t588 / 256; t590 = t588 % 256; t591 = t532 + t535 + t539; t592 = t591 / 256; t593 = t591 % 256; t594 = t538 + t541 + t545; t595 = t594 / 256; t596 = t594 % 256; t597 = t544 + t547 + t551; t598 = t597 / 256; t599 = t597 % 256; t600 = t472 + t550 + t553; t601 = t600 / 256; t602 = t600 % 256; // reduce heights of each column to 2 t603 = t8 + t5; t604 = t603 / 256; t605 = t603 % 256; t606 = t4 + t476 + t560; t607 = t606 / 256; t608 = t606 % 256; t609 = t482 + t559 + t563; t610 = t609 / 256; t611 = t609 % 256; t612 = t488 + t562 + t566; t613 = t612 / 256; t614 = t612 % 256; t615 = t494 + t565 + t569; t616 = t615 / 256; t617 = t615 % 256; t618 = t500 + t568 + t572; t619 = t618 / 256; t620 = t618 % 256; t621 = t506 + t571 + t575; t622 = t621 / 256; t623 = t621 % 256; t624 = t512 + t574 + t578; t625 = t624 / 256; t626 = t624 % 256; t627 = t518 + t577 + t581; t628 = t627 / 256; t629 = t627 % 256; t630 = t524 + t580 + t584; t631 = t630 / 256; t632 = t630 % 256; t633 = t530 + t583 + t587; t634 = t633 / 256; t635 = t633 % 256; t636 = t536 + t586 + t590; t637 = t636 / 256; t638 = t636 % 256; t639 = t542 + t589 + t593; t640 = t639 / 256; t641 = t639 % 256; t642 = t548 + t592 + t596; t643 = t642 / 256; t644 = t642 % 256; t645 = t554 + t595 + t599; t646 = t645 / 256; t647 = t645 % 256; t648 = t557 + t598 + t602; t649 = t648 / 256; t650 = t648 % 256; t651 = t241 + t556 + t601; t652 = t651 / 256; t653 = t651 % 256; // preliminary addition of the two remaining numbers t654 = t1 + t605; t655 = t604 + t608; t656 = t607 + t611; t657 = t610 + t614; t658 = t613 + t617; t659 = t616 + t620; t660 = t619 + t623; t661 = t622 + t626; t662 = t625 + t629; t663 = t628 + t632; t664 = t631 + t635; t665 = t634 + t638; t666 = t637 + t641; t667 = t640 + t644; t668 = t643 + t647; t669 = t646 + t650; t670 = t649 + t653; // compute generate and propagate pairs t671 = t654 > 255; t672 = t654 == 255; t673 = t655 > 255; t674 = t655 == 255; t675 = t656 > 255; t676 = t656 == 255; t677 = t657 > 255; t678 = t657 == 255; t679 = t658 > 255; t680 = t658 == 255; t681 = t659 > 255; t682 = t659 == 255; t683 = t660 > 255; t684 = t660 == 255; t685 = t661 > 255; t686 = t661 == 255; t687 = t662 > 255; t688 = t662 == 255; t689 = t663 > 255; t690 = t663 == 255; t691 = t664 > 255; t692 = t664 == 255; t693 = t665 > 255; t694 = t665 == 255; t695 = t666 > 255; t696 = t666 == 255; t697 = t667 > 255; t698 = t667 == 255; t699 = t668 > 255; t700 = t668 == 255; t701 = t669 > 255; t702 = t669 == 255; t703 = t670 > 255; t704 = t670 == 255; // parallel prefix tree for computing carry bits // up-level 1 t673 = t674 & t671 | t673; t674 = t674 & t672; t677 = t678 & t675 | t677; t678 = t678 & t676; t681 = t682 & t679 | t681; t682 = t682 & t680; t685 = t686 & t683 | t685; t686 = t686 & t684; t689 = t690 & t687 | t689; t690 = t690 & t688; t693 = t694 & t691 | t693; t694 = t694 & t692; t697 = t698 & t695 | t697; t698 = t698 & t696; t701 = t702 & t699 | t701; t702 = t702 & t700; // up-level 2 t677 = t678 & t673 | t677; t678 = t678 & t674; t685 = t686 & t681 | t685; t686 = t686 & t682; t693 = t694 & t689 | t693; t694 = t694 & t690; t701 = t702 & t697 | t701; t702 = t702 & t698; // up-level 3 t685 = t686 & t677 | t685; t686 = t686 & t678; t701 = t702 & t693 | t701; t702 = t702 & t694; // up-level 4 t701 = t702 & t685 | t701; t702 = t702 & t686; // down-level 6 // down-level 7 t693 = t694 & t685 | t693; t694 = t694 & t686; // down-level 8 t681 = t682 & t677 | t681; t682 = t682 & t678; t689 = t690 & t685 | t689; t690 = t690 & t686; t697 = t698 & t693 | t697; t698 = t698 & t694; // down-level 9 t703 = t704 & t701 | t703; t704 = t704 & t702; t675 = t676 & t673 | t675; t676 = t676 & t674; t703 = t704 & t701 | t703; t704 = t704 & t702; t679 = t680 & t677 | t679; t680 = t680 & t678; t703 = t704 & t701 | t703; t704 = t704 & t702; t683 = t684 & t681 | t683; t684 = t684 & t682; t703 = t704 & t701 | t703; t704 = t704 & t702; t687 = t688 & t685 | t687; t688 = t688 & t686; t703 = t704 & t701 | t703; t704 = t704 & t702; t691 = t692 & t689 | t691; t692 = t692 & t690; t703 = t704 & t701 | t703; t704 = t704 & t702; t695 = t696 & t693 | t695; t696 = t696 & t694; t703 = t704 & t701 | t703; t704 = t704 & t702; t699 = t700 & t697 | t699; t700 = t700 & t698; t703 = t704 & t701 | t703; t704 = t704 & t702; // compute final sum digits as the digits of the product t670 = t670 + (nat) (t701&(bool)1); t669 = t669 + (nat) (t699&(bool)1); t668 = t668 + (nat) (t697&(bool)1); t667 = t667 + (nat) (t695&(bool)1); t666 = t666 + (nat) (t693&(bool)1); t665 = t665 + (nat) (t691&(bool)1); t664 = t664 + (nat) (t689&(bool)1); t663 = t663 + (nat) (t687&(bool)1); t662 = t662 + (nat) (t685&(bool)1); t661 = t661 + (nat) (t683&(bool)1); t660 = t660 + (nat) (t681&(bool)1); t659 = t659 + (nat) (t679&(bool)1); t658 = t658 + (nat) (t677&(bool)1); t657 = t657 + (nat) (t675&(bool)1); t656 = t656 + (nat) (t673&(bool)1); t655 = t655 + (nat) (t671&(bool)1); // get the product digits p0 = t2; p1 = t654 % 256; p2 = t655 % 256; p3 = t656 % 256; p4 = t657 % 256; p5 = t658 % 256; p6 = t659 % 256; p7 = t660 % 256; p8 = t661 % 256; p9 = t662 % 256; p10 = t663 % 256; p11 = t664 % 256; p12 = t665 % 256; p13 = t666 % 256; p14 = t667 % 256; p15 = t668 % 256; p16 = t669 % 256; p17 = t670 % 256; }