// ************************************************************************** // // // // eses eses // // eses eses // // eses eseses esesese eses Embedded Systems Group // // ese ese ese ese ese // // ese eseseses eseseses ese Department of Computer Science // // eses eses ese eses // // eses eseses eseseses eses University of Kaiserslautern // // eses eses // // // // ************************************************************************** // // This module implements carry-ripple addition of B-complement numbers. // // Carry-ripple addition has depth O(N) and is therefore not optimal. // // ** Note: We are only interested in even values of B ** // // ************************************************************************** // macro B = 4; macro N = 4; macro alpha(x) = (x<B/2 ? +x : +x-B); macro gamma(y) = (y<0 ? y+B : y); macro dval(x,i,k) = (i==k-1 ? alpha(x[i]) : +x[i]); macro natval(x,m) = sum(i=0..m-1) (x[i] * exp(B,i)); macro intval(x,k) = sum(i=0..k-1) (dval(x,i,k) * exp(B,i)); module IntAddCRA([N]nat{B} ?x,?y,[N+1]nat{B} s) { [N+1]nat{2} c; // carry digits c[0] = 0; for(i=0..N-2) { nat{2*B} sm; sm = x[i] + y[i] + c[i]; c[i+1] = sm / B; s[i] = sm % B; } {// most significant digits require alpha/gamma applications int{B} sm; sm = alpha(x[N-1]) + alpha(y[N-1]) + c[N-1]; s[N] = gamma(sm / B); s[N-1] = sm % B; } assert(intval(s,N+1) == intval(x,N) + intval(y,N)); } drivenby Test01 { for(i=0..N-1) { x[i] = i % B; y[i] = (N+i) % B; } } drivenby Test02 { for(i=0..N-1) { x[i] = (2*i+1) % B; y[i] = (N+2*i) % B; } }