// ************************************************************************** // // // // eses eses // // eses eses // // eses eseses esesese eses Embedded Systems Group // // ese ese ese ese ese // // ese eseseses eseseses ese Department of Computer Science // // eses eses ese eses // // eses eseses eseseses eses University of Kaiserslautern // // eses eses // // // // ************************************************************************** // // The following module implements a multiplication of B-complement numbers. // // The computation is done by summing up the usual partial products by the use// // of carry-ripple adders both for the intermediate steps and the final step: // // // // pp[0][1] pp[0][0] p[0] // // pp[1][1] pp[1][0] p[1] // // pp[2][1] pp[2][0] p[2] // // p[5] p[4] p[3] // // ------------------------------------------------------ // // p[5] p[4] p[3] p[2] p[1] p[0] // // // // where B*pp[i][N-1..0]+p[i] = y[N-1..0] * x[i] + pp[i-1][N-1..0] for i>0 // // and B*pp[i][N-1..0]+p[i] = y[N-1..0] * x[i] for i==0. // // // // The depth of the circuit is seen by observing that the evaluation can // // proceed diagonally through the array. Thus, the depth of the circuit // // is O(M+N) and therefore not optimal. // // ** Note: We are only interested in even values of B ** // // ************************************************************************** // macro B = 4; // base of the radix numbers macro M = 4; // number of digits used for x macro N = 3; // number of digits used for y macro alpha(x) = (x<(B/2) ? +x : +x-B); macro gamma(y) = (y<0 ? y+B : y); macro dval(x,i,k) = (i==k-1 ? alpha(x[i]) : +x[i]); macro intval(x,k) = sum(i=0..k-1) (dval(x,i,k) * exp(B,i)); module IntMulCRACRA([M]nat{B} ?x,[N]nat{B} ?y,[M+N]nat{B} p) { event [M][N+1]nat{B} pp; // digits of partial products event [M][N]int{B} cp; // carries for summation for(i=0..M-1) { // compute pp[i][N..0] = y[N-1..0] * x[i] + pp[i-1][N..1] for(j=0..N-1) let(xin = (i==M-1 ? alpha(x[i]) : +x[i])) let(yin = (j==N-1 ? alpha(y[j]) : +y[j])) let(pin = (i==0 ? 0 : (j==N-1 ? alpha(pp[i-1][j+1]) : +pp[i-1][j+1]))) let(cin = (j==0 ? 0 : cp[i][j-1])) let(sm = xin * yin + pin + cin) { // has type int{B*B} cp[i][j] = sm / B; pp[i][j] = sm % B; } pp[i][N] = gamma(cp[i][N-1]); } for(k=0..M-1) p[k] = pp[k][0]; for(k=0..N-1) p[k+M] = pp[M-1][k+1]; assert(intval(p,M+N) == intval(x,M) * intval(y,N)); } drivenby example1 { x = [0,0,0,3]; y = [0,0,3]; } drivenby example2 { x = [3,3,3,0]; y = [0,0,3]; } drivenby example3 { x = [0,0,0,3]; y = [3,3,0]; } drivenby example4 { x = [3,3,3,0]; y = [3,3,0]; } drivenby example5 { x = [0,0,0,2]; y = [0,0,2]; }