// ************************************************************************** // // // // eses eses // // eses eses // // eses eseses esesese eses Embedded Systems Group // // ese ese ese ese ese // // ese eseseses eseseses ese Department of Computer Science // // eses eses ese eses // // eses eseses eseseses eses University of Kaiserslautern // // eses eses // // // // ************************************************************************** // // The following module implements a multiplication of radix-B numbers. The // // computation is done by summing up the usual partial products by the use of // // carry-save adders for the intermediate steps and a carry-ripple adder for // // the final step. // // The depth of the circuit is seen by observing that the evaluation can // // proceed row-wise for i=0..M-2, and columnwise for the final row. Thus, the // // depth of the circuit is O(M+N) and therefore not optimal. // // The Quartz simulator requires T(M,N) = 2M+2N micro steps per macro step. // // ************************************************************************** // macro B = 4; // base of the radix numbers macro M = 4; // number of digits used for x macro N = 3; // number of digits used for y macro natval(x,m) = sum(i=0..m-1) (x[i] * exp(B,i)); module NatMulCSACRA([M]nat{B} ?x,[N]nat{B} ?y,[M+N]nat{B} p) { event [M][N]nat{B} pp; // digits of partial products event [M][N]int{B} cp; // carries for summation in CSA array event [N]int{2} cr; // carries for summation in final CRA assert(B==2*(B/2)); // check that B is even // ------------------------------------------------------------------------- // construct carry-save adder array // this part has depth O(M) since each row can be evaluated in O(1) // ------------------------------------------------------------------------- for(i=0..M-1) { for(j=0..N-1) // pp[i][N..0] = pp[i-1][N-1..1] + cp[i-1][N-1..0] + x[i]*y[N-1..0] let(pin = (i==0 ? 0 : (j==N-1 ? 0 : pp[i-1][j+1]))) let(cin = (i==0 ? 0 : cp[i-1][j])) { event nat{B*B} sm; sm = x[i] * y[j] + pin + cin; cp[i][j] = sm / B; pp[i][j] = sm % B; } } // ------------------------------------------------------------------------- // final addition p[M+N-1..M] = pp[M-1][N-1..1] + cp[M-1][N-1..0] using CRA // ------------------------------------------------------------------------- for(k=0..M-1) p[k] = pp[k][0]; for(j=0..N-1) let(pin = (j==N-1 ? 0 : pp[M-1][j+1])) let(cin = (j==0 ? 0 : cr[j-1])) { event nat{2*B} sm; sm = pin + cp[M-1][j] + cin; cr[j] = sm / B; p[M+j] = sm % B; } // ------------------------------------------------------------------------- // check the result // ------------------------------------------------------------------------- assert(natval(p,M+N) == natval(x,M) * natval(y,N)); } drivenby MinInt_MinInt { x[M-1] = B/2; for(i=0..M-2) x[i] = 0; y[N-1] = B/2; for(i=0..N-2) y[i] = 0; } drivenby MinInt_MaxInt { x[M-1] = B/2; for(i=0..M-2) x[i] = 0; y[N-1] = (B/2)-1; for(i=0..N-2) y[i] = B-1; } drivenby MaxInt_MinInt { x[M-1] = (B/2)-1; for(i=0..M-2) x[i] = B-1; y[N-1] = B/2; for(i=0..N-2) y[i] = 0; } drivenby MaxInt_MaxInt { x[M-1] = (B/2)-1; for(i=0..M-2) x[i] = B-1; y[N-1] = (B/2)-1; for(i=0..N-2) y[i] = B-1; } drivenby Test01 { for(i=0..M-1) x[i] = (-B/2-(i+1)) % B; for(i=0..N-1) y[i] = (-B/2-(i+1)) % B; } drivenby Test02 { for(i=0..M-1) x[i] = (-B/2-(i+1)) % B; for(i=0..N-1) y[i] = (-B-1-i) % B; } drivenby Test03 { for(i=0..M-1) x[i] = (-B-1-i) % B; for(i=0..N-1) y[i] = (-B/2-(i+1)) % B; } drivenby Test04 { for(i=0..M-1) x[i] = (-B-1-i) % B; for(i=0..N-1) y[i] = (-B-1-i) % B; }