// ************************************************************************** // // // // eses eses // // eses eses // // eses eseses esesese eses Embedded Systems Group // // ese ese ese ese ese // // ese eseseses eseseses ese Department of Computer Science // // eses eses ese eses // // eses eseses eseseses eses University of Kaiserslautern // // eses eses // // // // ************************************************************************** // // The following module implements comparison of signed digit numbers. // // Since 0 has a unique representation as signed digit number, we check that // // difference of the two given numbers is zero. It works for bases A,B with // // floor(B/2)+1 <= D < B, thus it cannot be used for binary signed digits. // // Moreover, we can also check whether one number is less than another one by // // subtraction of the former by the latter. It remains to check the sign of // // the result which is determined by the leftmost non-zero digit. // // To see that comparison can be done in time O(1) see module FirstOne that // // determines the first element in a sequence with a certain property in O(1).// // ************************************************************************** // macro D = 3; // digit set is -D,...,-1,0,1,...,D macro B = 5; // base of the radix numbers macro N = 4; // number of digits used for the addition // macro to evaluate a signed digit number macro sgnval(x,k) = sum(i=0..k-1) (x[i] * exp(B,i)); macro sgn(x) = (x>0 ? +1 : (x<0 ? -1 : 0)); macro sign(x,k) = (k==0 ? sgn(x[0]) : (x[k]!=0 ? sgn(x[k]) : sign(x,k-1))); module SgnLes([N]int{D+1} ?x,?y,bool les) { [N+1]int{2} t; // transfer digits [N+1]int{D+1} s; // sum digits of a-b // compute sum and transfer digits in parallel t[0] = 0; for(i=0..N-1) let(ds = x[i]-y[i]) { t[i+1] = (ds>=D?1:(ds<=-D?-1:0)); s[i] = ds + t[i] - t[i+1] * B; } s[N] = t[N]; les = (sign(s,N)==-1); // assertion assert(les <-> (sgnval(x,N) < sgnval(y,N))); }