// ************************************************************************** // // // // eses eses // // eses eses // // eses eseses esesese eses Embedded Systems Group // // ese ese ese ese ese // // ese eseseses eseseses ese Department of Computer Science // // eses eses ese eses // // eses eseses eseseses eses University of Kaiserslautern // // eses eses // // // // ************************************************************************** // // This module implements a nonperforming division of radix-2 numbers, i.e. // // in each step of the digit computation of the quotient, the shifted divisor // // is subtracted from the current dividend. If the result is negative, it is // // neglected and the next dividend is just the shifted previous one; otherwise// // the result of the subtraction defines the next dividend. // // ************************************************************************** // macro M = 5; // number of digits used for x macro N = 3; // number of digits used for y macro natval(x,m) = sum(i=0..m-1) ((x[i] ? 1 : 0) * exp(2,i)); module NatDivNonperform([M]bool ?x,[N]bool ?y,[M]bool q,[N]bool r) { event [M][N+1]bool c; event [M][N]bool s,rr; for(iup=0..M-1) let(i=M-1-iup) {// thus, i=M-1..0 for(j=0..N-1) { // compute s[i][N-1..0] = rr[i+1][N-2..0]@x[i] - y[N-1..0] let(xin = (j==0 ? x[i] : (i==M-1 ? false : rr[i+1][j-1])) ) let(cin = (j==0 ? true : c[i][j])) FullAdd(xin,!y[j],cin,c[i][j+1],s[i][j]); } // q[i]=false iff s[i][N-1..0] is negative q[i] = (i==M-1 ? c[i][N] : c[i][N] xor rr[i+1][N-1]); // determine next partial remainder for(j=0..N-1) let(xin = (j==0 ? x[i] : (i==M-1 ? false : rr[i+1][j-1])) ) rr[i][j] = (q[i] ? s[i][j] : xin); } // determine final remainder for(j=0..N-1) r[j] = rr[0][j]; // check the specification if(exists(i=0..N-1) y[i]) { assert(natval(x,M) == natval(y,N) * natval(q,M) + natval(r,N)); assert(natval(r,N) < natval(y,N)); } }