// ************************************************************************** // // // // eses eses // // eses eses // // eses eseses esesese eses Embedded Systems Group // // ese ese ese ese ese // // ese eseseses eseseses ese Department of Computer Science // // eses eses ese eses // // eses eseses eseseses eses University of Kaiserslautern // // eses eses // // // // ************************************************************************** // // This module implements a restoring division of radix-2 numbers; i.e. in // // each step, the divisor is subtracted from the dividend and the quotient bit// // is determined by the sign of the result. If the result is negative, the // // correction is immediately done by adding the divisor. Restoring division is// // can be easily improved by the nonperforming or nonrestoring division. // // ************************************************************************** // macro M = 5; // number of digits used for x macro N = 3; // number of digits used for y macro natval(x,m) = sum(i=0..m-1) ((x[i] ? 1 : 0) * exp(2,i)); module NatDivRestore([M]bool ?x,[N]bool ?y,[M]bool q,[N]bool r) { event [M][N+1]bool cs,cr; event [M][N]bool s,rr; for(iup=0..M-1) let(i=M-1-iup) {// thus, i=M-1..0 for(j=0..N-1) { // compute s[i][N-1..0] = rr[i+1][N-2..0]@x[i] - y[N-1..0] let(xin = (j==0 ? x[i] : (i==M-1 ? false : rr[i+1][j-1])) ) let(cin = (j==0 ? true : cs[i][j])) FullAdd(xin,!y[j],cin,cs[i][j+1],s[i][j]); } // q[i]=false iff s[i][N-1..0] is negative q[i] = (i==M-1 ? cs[i][N] : cs[i][N] xor rr[i+1][N-1]); // compute rr[i][N-1..0] = s[i][N-1..0] + !q[i]&y[N-1..0] for(j=0..N-1) { let(cin = (j==0 ? false : cr[i][j])) FullAdd(s[i][j],!q[i]&y[j],cin,cr[i][j+1],rr[i][j]); } } // determine final remainder for(j=0..N-1) r[j] = rr[0][j]; // check the specification if(exists(i=0..N-1) y[i]) { assert(natval(x,M) == natval(y,N) * natval(q,M) + natval(r,N)); assert(natval(r,N) < natval(y,N)); } }