// ************************************************************************** // // // // eses eses // // eses eses // // eses eseses esesese eses Embedded Systems Group // // ese ese ese ese ese // // ese eseseses eseseses ese Department of Computer Science // // eses eses ese eses // // eses eseses eseseses eses University of Kaiserslautern // // eses eses // // // // ************************************************************************** // // The following module implements a multiplication of radix-2 numbers. The // // computation is done by summing up the usual partial products by the use of // // carry-ripple adders both for the intermediate steps and the final step. // // The depth of the circuit is O(M+N) and therefore not optimal. // // ************************************************************************** // macro M = 5; // number of digits used for x macro N = 3; // number of digits used for y macro natval(x,m) = sum(i=0..m-1) ((x[i]?1:0) * exp(2,i)); module NatMulCRACRA([M]bool ?x,[N]bool ?y,[M+N]bool p) { event [M-1][N]bool pp; // digits of partial products event [M][N-1]bool cp; // carries for summation // construct M x N multiplier array for(i=0..M-1) { for(j=0..N-1) { let(pin = (i==0 ? false : pp[i-1][j])) let(cin = (j==0 ? false : cp[i][j-1])) let(pout = (j==0 | i==M-1 ? p[i+j] : pp[i][j-1])) let(cout = (j==N-1 ? (i==M-1 ? p[i+j+1] : pp[i][j]) : cp[i][j])) FullAdd(x[i]&y[j],pin,cin,cout,pout); } } // check the specification assert(natval(p,M+N) == natval(x,M) * natval(y,N)); }