
MiniC Language Reference Card
conventions used in reference card

�,�1,�2 boolean expressions

⌧,⇡ general expressions

n,m compile-time constant expressions

↵1,↵2 data types

module import and implemenation

package pointedName define root path for importing

modules relative to current dir.

include pointedName include textfile

// comment single line comment

/⇤ comment ⇤/ block comment (mult. lines)

function f (vdcl) : ↵ {

stat

}

function f with variable dec-

larations vdcl, body statement

stat and result type ↵

variable declarations vdcl::=

general syntax is a comma-separated list of single declarations

type x1, . . . , xn, e.g. nat x1,x2, int z1,z2

data types type::=

bool booleans

nat unsigned integers (machine dependent)

int signed integers (machine dependent)

[n]↵ array having n elements of type ↵

↵1 ⇤ . . .⇤ ↵n tuple type

literals

boolean constants are false and true; examples for un-

signed integers are 0,1,2,3,... while signed integers are

...,�2,�1,�0,+0,+1,+2,+3,...

expressions

type casts

(nat) ⌧ interprets ⌧ as type nat
(int) ⌧ interprets ⌧ as type int
(bool) ⌧ interprets ⌧ as type bool

constructing and accessing compound types

⌧ [⇡] array access

[|⌧0, . . . , ⌧n�1]| array of n values

⌧.n tuple access

(|⌧0, . . . , ⌧n�1)| tuple of n values

equality

⌧1 == ⌧2 equality

⌧1 != ⌧2 inequality

numeric relations (for both nat and int)

⌧1 < ⌧2 less than

⌧1 <= ⌧2 less than or equal to

⌧1 > ⌧2 greater than

⌧1 >= ⌧2 greater than or equal to

boolean operators

! � not � negation

�1 & �2 �1 and �2 conjunction

�1 | �2 �1 or �2 disjunction

�1 ^ �2 �1 xor �2 exclusive or

�1 �> �2 �1 imp �2 implication

�1 <�> �2 �1 eqv �2 equivalence

arithmetic operators (for both nat and int)

⌧ + ⇡ addition

⌧ � ⇡ subtraction

⌧ ⇤ ⇡ multiplication

⌧ / ⇡ division

⌧ % ⇡ modulo

abs(⌧) absolute value

function call

f (⌧1, . . . , ⌧n); call function f with parameter expres-

sions ⌧1, . . . , ⌧n

statements stat::=

atomic statements

� = ⌧ single word assignment

�1,�2 = ⌧ double word assignment

[name :] assert(�); assertion

sync thread synchronisation

composed statements

if (�) S1 [else S2] conditional statement

S1 S2 sequential execution

{ ↵ x; S } declare variable x of type ↵ with

scope S

do S while(�) repeat S while � holds

while (�)S while � holds, repeat S

for (i=m .. n) S unconditional loop

return ⌧ return value ⌧

remarks on function calls

the following restrictions apply

• no recursive functions: a function is not allowed to call itself,

not even via other function calls

• arguments of scalar types are provided via call-by-value, ar-

rays and tuples via call-by-reference (hence the latter are po-

tentially overwritten by the function)

